Credal Sets

## Imprecise Probability Theory Basic Concepts and Credal Sets

#### Alessandro Antonucci

alessandro@idsia.ch

Istituto "Dalle Molle" di Studi sull'Intelligenza Artificiale - Lugano (Switzerland)

SIPTA School on Imprecise Probability Pescara, July 16th, 2012

# Outline and scheduling

- An informal introduction to IPs
  - Reasoning with (imprecise) fault trees
  - From determinism to imprecision (through uncertainty)
- What probability is? (aka does probability exists?)
  - Subjective vs. Objective
  - Behavioural interpretation of subjective probability
  - Prices, probabilities, previsions
- What imprecise probability is?
  - Reasons for imprecise probabilities
  - Avoiding sure loss, coherence and natural extension
  - Credal sets

brake fails = [ pads  $\lor$  ( sensor  $\land$  controller  $\land$  actuator ) ]

devices failures are independent





































- FIFA'12 final match between Italy and Spain
- Result of Spain after the regular time? Win, draw or loss?

#### DETERMINISM

The Spanish goalkeeper is unbeatable and Italy always receives a goal

Spain (certainly) wins

 $\begin{array}{c}
P(Win) \\
P(Draw) = \begin{bmatrix} 1 \\ 0 \\
P(Loss) \end{bmatrix}
\end{array}$ 

#### UNCERTAINTY

Win is two times more probable than draw, and this being three times more probable than loss

$$P(Win) = \begin{bmatrix} .6 \\ .3 \\ .1 \end{bmatrix}$$

$$P(Loss)$$

#### MPRECISION

```
P(Win) > P(Draw)
P(Draw) > P(Loss)
P(Win)
P(Draw) = \begin{bmatrix} \frac{\alpha}{3} + \beta + \frac{\gamma}{2} \\ \frac{\alpha}{3} + \frac{\gamma}{2} \end{bmatrix}
\forall \alpha, \beta, \gamma \text{ such that}
\alpha > 0, \beta > 0, \gamma > 0,
\alpha + \beta + \gamma = 1
```

- FIFA'12 final match between Italy and Spain
- Result of Spain after the regular time? Win, draw or loss?

#### DETERMINISM

The Spanish goalkeeper is unbeatable and Italy always receives a goal

Spain (certainly) wins

$$\begin{array}{c} P(Win) \\ P(Draw) \\ P(Loss) \end{array} = \left[ \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$$

#### UNCERTAINTY

Win is two times more probable than draw, and this being three times more probable than loss

$$P(Win) = \begin{bmatrix} .6 \\ .3 \\ .1 \end{bmatrix}$$
$$P(Loss) = \begin{bmatrix} .6 \\ .3 \\ .1 \end{bmatrix}$$

#### **MPRECISION**

```
P(Win) > P(Draw)
P(Draw) > P(Loss)
P(Win)
P(Draw) = \begin{bmatrix} \frac{\alpha}{3} + \beta + \frac{\gamma}{2} \\ \frac{\alpha}{3} + \frac{\gamma}{2} \end{bmatrix}
\forall \alpha, \beta, \gamma \text{ such that}
\alpha > 0, \beta > 0, \gamma > 0,
\alpha + \beta + \gamma = 1
```

- FIFA'12 final match between Italy and Spain
- Result of Spain after the regular time? Win, draw or loss?

#### DETERMINISM

The Spanish goalkeeper is unbeatable and Italy always receives a goal

Spain (certainly) wins

 $\begin{array}{c}
P(Win) \\
P(Draw) \\
P(Loss)
\end{array} = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}$ 

#### UNCERTAINTY

Win is two times more probable than draw, and this being three times more probable than loss

$$\begin{array}{l} P(Win) \\ P(Draw) \\ P(Loss) \end{array} = \left[ \begin{array}{c} .6 \\ .3 \\ .1 \end{array} \right]$$

#### **IMPRECISION**

```
P(Win) > P(Draw)
P(Draw) > P(Loss)
P(Win)
P(Draw) = \begin{bmatrix} \frac{\alpha}{3} + \beta + \frac{\gamma}{2} \\ \frac{\alpha}{3} + \frac{\gamma}{2} \\ \frac{\alpha}{3} + \frac{\gamma}{2} \end{bmatrix}
\forall \alpha, \beta, \gamma \text{ such that}
\alpha > 0, \beta > 0, \gamma > 0,
\alpha + \beta + \gamma = 1
```

- FIFA'12 final match between Italy and Spain
- Result of Spain after the regular time? Win, draw or loss?

#### DETERMINISM

The Spanish goalkeeper is unbeatable and Italy always receives a goal

Spain (certainly) wins

$$P(Win) = \begin{bmatrix} 1 \\ 0 \\ P(Loss) \end{bmatrix}$$

#### UNCERTAINTY

Win is two times more probable than draw, and this being three times more probable than loss

$$\begin{array}{l} P(Win) \\ P(Draw) \\ P(Loss) \end{array} = \left[ \begin{array}{c} .6 \\ .3 \\ .1 \end{array} \right]$$

#### IMPRECISION

```
P(Win) > P(Draw) 
P(Draw) > P(Loss) 
P(Win) 
P(Draw) = \begin{bmatrix} \frac{\alpha}{3} + \beta + \frac{\gamma}{2} \\ \frac{\alpha}{3} + \frac{\gamma}{2} \\ \frac{\alpha}{3} \end{bmatrix} 
\forall \alpha, \beta, \gamma \text{ such that} 
\alpha > 0, \beta > 0, \gamma > 0, 
\alpha + \beta + \gamma = 1
```

# DETERMINISM UNCERTAINTY IMPRECISION

# DETERMINISM UNCERTAINTY IMPRECISION

# DETERMINISM UNCERTAINTY IMPRECISION

# **EXPRESSIVENESS**

Credal Sets

#### Three different levels of knowledge

# DETERMINISM UNCERTAINTY IMPRECISION

# DETERMINISM UNCERTAINTY IMPRECISION

limit of infinite amount of available information (e.g., very large data sets)

# DETERMINISM UNCERTAINTY IMPRECISION

limit of infinite amount of available information (e.g., very large data sets)

Propositional (Boolean) Logic Bayesian probability theory Walley's theory of coherent lower previsions





Credal Sets

[...] Bayesian inference will always be a basic tool for practical everyday statistics ,

*if only because questions must be answered and decisions must be taken, so that a statistician must always stand ready to upgrade his vaguer forms of belief into precisely additive probabilities* 

Art Dempster (in his foreword to Shafer's book)

# Probability: one word for two (not exclusive) things

#### Randomness

# Variability captured through repeated observations

#### De Moivre and Kolmogorov



- Chances
- Feature of the world
- Aleatory or objective
- Frequentist theory
- Limiting frequencies

#### Partial knowledge

Incomplete information about issues of interest

Bayes and De Finetti



- Beliefs
- Feature of the observer
- Epistemic or subjective
- Bayesian theory
- Behaviour (bets dispositions)

# Objective probability

- X taking its values in (finite set) Ω
- Value X = x ∈ Ω as the output of an experiment which can be iterated
- Prob *P*(*x*) as limiting frequency

$$P(x) := \lim_{N \to +\infty} \frac{\#(X = x)}{N}$$

- Kolmogorov's axioms follow from this
- Probability as a property of the world
- Not only (statistical and quantum) mechanics, hazard games (coins, dices, cards), but also economics, bio/psycho/sociology, linguistics, etc.
- But not all events can be iterated ....



# Probability in everyday life



Probabilities often pertains to singular events not necessarily related to statistics

# Subjective probability

- Probability *p* of me having a kid
- Singular event: frequency unavailable
- Subjective probability
  - models (partial) knowledge of a subject
  - feature of the subject not of the world
  - two subjects can assess different probs
- Quantitative measure of knowledge?
  - Behavioural approach
  - Subjective betting dispositions
  - A (linear) utility function is needed

- Money?
- Big money not linear
- Small, somehow yes



lottery tickets  $\propto$  winning chance  $\propto$  benefit

infinite number of tickets makes utility real-valued

# Subjective probability

- Probability *p* of me having a kid
- Singular event: frequency unavailable
- Subjective probability
  - models (partial) knowledge of a subject
  - feature of the subject not of the world
  - two subjects can assess different probs
- Quantitative measure of knowledge?
  - Behavioural approach
  - Subjective betting dispositions
  - A (linear) utility function is needed

- Money?
- Big money not linear
- Small, somehow yes



 $\begin{array}{c} \text{lottery tickets} \\ \propto \\ \text{winning chance} \\ \propto \\ \text{benefit} \end{array}$ 

infinite number of tickets makes utility real-valued

# Subjective probability

- Probability *p* of me having a kid
- Singular event: frequency unavailable
- Subjective probability
  - models (partial) knowledge of a subject
  - feature of the subject not of the world
  - two subjects can assess different probs
- Quantitative measure of knowledge?
  - Behavioural approach
  - Subjective betting dispositions
  - A (linear) utility function is needed

- Money?
- Big money not linear
- Small, somehow yes



lottery tickets  $\propto$  winning chance  $\propto$  benefit

infinite number of tickets makes utility real-valued
## Subjective probability

- Probability p of me having a kid
- Singular event: frequency unavailable
- Subjective probability
  - models (partial) knowledge of a subject
  - feature of the subject not of the world
  - two subjects can assess different probs
- Quantitative measure of knowledge?
  - Behavioural approach
  - Subjective betting dispositions
  - A (linear) utility function is needed

- Money?
- Big money not linear!
- Small, somehow yes



 $\begin{array}{c} \text{lottery tickets} \\ \propto \\ \text{winning chance} \\ \propto \\ \text{benefit} \end{array}$ 

infinite number of tickets makes utility real-valued

## Subjective probability

- Probability *p* of me having a kid
- Singular event: frequency unavailable
- Subjective probability
  - models (partial) knowledge of a subject
  - feature of the subject not of the world
  - two subjects can assess different probs
- Quantitative measure of knowledge?
  - Behavioural approach
  - Subjective betting dispositions
  - A (linear) utility function is needed

- Money?
- Big money not linear!
- Small, somehow yes



 $\begin{array}{c} \text{lottery tickets} \\ \propto \\ \text{winning chance} \\ \propto \\ \text{benefit} \end{array}$ 

infinite number of tickets makes utility real-valued

#### Probabilities as dispositions to buy/sell gambles

 Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - maximum price 100EUR for which you buy the gamble
  - $\frac{\min \min price}{100 EUR}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms



- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - <u>maximum price</u> <u>100EUR</u> for which you buy the gamble
  - $\frac{\min price}{100 EUR}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms



- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - $\frac{\text{maximum price}}{100 \text{EUR}}$  for which you buy the gamble
  - $\frac{\min \min price}{100 \text{EUR}}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms



- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

This check has a value of 100 EUR if Alessandro has a child zero otherwise

#### • The bookie sells this gamble

- Probability p as a price for the gamble
  - maximum price 100EUR
     for which you buy the gamble
  - $\frac{\min \min price}{100 EUR}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms



- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - maximum price 100EUR
     minimum price 100EUR
     for which you (bookie) sell it
- Interpretation + rationality produce axioms



- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

This check has a value of 100 EUR if Alessandro has a child zero otherwise

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - $\frac{\text{maximum price}}{100\text{EUR}}$  for which you buy the gamble
  - $\frac{\min \min price}{100 \text{EUR}}$  for which you (bookie) sell it

Interpretation + rationality produce axioms



- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - $\frac{\text{maximum price}}{100\text{EUR}}$  for which you buy the gamble
  - $\frac{\min price}{100 \text{EUR}}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms





- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - $\frac{\text{maximum price}}{100\text{EUR}}$  for which you buy the gamble
  - $\frac{\min \min price}{100 \text{EUR}}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms





- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability p as a price for the gamble
  - $\frac{\text{maximum price}}{100\text{EUR}}$  for which you buy the gamble
  - $\frac{\min price}{100 \text{EUR}}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms





- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - $\frac{\text{maximum price}}{100\text{EUR}}$  for which you buy the gamble
  - $\frac{\min \min price}{100 \text{EUR}}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms





- Probabilities as dispositions to buy/sell gambles
- Gambles (Anglo-Saxon world) are checks whose amount is uncertain/unknown

- The bookie sells this gamble
- Probability *p* as a *price* for the gamble
  - $\frac{\text{maximum price}}{100\text{EUR}}$  for which you buy the gamble
  - $\frac{\min price}{100 \text{EUR}}$  for which you (bookie) sell it
- Interpretation + rationality produce axioms





Introducing IPs

Precise Probabilities

Imprecise Probabilities

Credal Sets

#### Coherence and linear previsions

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

$$P(f) = \sum_{x \in \Omega} P(x) \nleftrightarrow f(x)$$

#### Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

$$\rightarrow P(T) = \sum_{j}$$
  
linear prevision  
be extended to a  
rent lower prevision

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

• Exists probability mass function P(X):  $P(A_i) = P_{A_i}$ 

• Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$ 

linear prevision to be extended to a coherent lower prevision

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

#### Moreover, assessments $\{P_{A_i}\}_{i=1}^N$ are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

$$P(f) = \sum_{x \in \Omega} P(x) \notin$$
*v*ision led to a

coherent lower prevision

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

 $P(f) = \sum_{x \in \Omega} P(x) \not\in f(x)$ 

linear prevision to be extended to a coherent lower previsior

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

linear prevision to be extended to a coherent lower prevision

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

$$P(f) = \sum_{x \in \Omega} P(x) \not f(x)$$
 probability mass function  
to be extended to a to be extended  
observed to a to a credal set

Don't be crazy: choose prices s.t. there is always has a chance to win (whatever the stakes set by the bookie)

Prices  $\{P_{A_i}\}_{i=1}^N$  for events  $A_i \subseteq \Omega$ , i = 1, ..., N are coherent iff

$$\max_{x\in\Omega}\sum_{i=1}^N c_i[I_{A_i}(x)-P_{A_i}]\geq 0$$

Moreover, assessments  $\{P_{A_i}\}_{i=1}^N$  are coherent iff

- Exists probability mass function P(X):  $P(A_i) = P_{A_i}$
- Or, for general gambles, linear functional  $P(f_i) := P_{f_i}$

 $P(f) = \sum_{x \in \Omega} P(x) \not\leftarrow f(x)$ probability mass function
to be extended to a to be extended
coherent lower prevision to a credal set

## Subjective P, if objective P exists?

- Chances known  $\Rightarrow$  beliefs coincide
- Swiss lotto (45 nums): X<sub>6</sub> next lotto's 6-tuple
- $x'_6$  and  $x''_6$  your two guesses (6 + 6 nums)

• 
$$P((X_6 = x_6') \lor (X_6 = x_6'')) \simeq 1/4,000,000$$

- You spend  $\frac{1}{4,000,000}$  to have 1 CHF if you win
- You spend <u>s</u> 4,000,000 to have s CHF if you win
- But  $\frac{s}{4,000,000} = 3 \text{ CHFs} \Rightarrow s = 12,000,000$
- Worth play if jackpot ≥ 12'000'000 CHFs

| Joker 000000          |          | HN. D ANZEG  | EN-     |         |            |   |
|-----------------------|----------|--------------|---------|---------|------------|---|
| <b>\$</b> lõtto       | ۲        | 000          | 9 9     | en      |            |   |
|                       |          |              | PLUS    | 0       |            |   |
|                       |          |              | Gerun   | 0       |            |   |
| Ziehung vom 27.10.    | 2010 Gev | /innrängeAna | ahl Gew | rinner  | СН         | F |
|                       | 6        | Plus         |         | 0       | 0.00       |   |
|                       | 6        |              |         | 17      | 432'979.65 |   |
|                       | 5 +      | ZZ Plus      |         | 2       | 82'043.80  | ٠ |
|                       | 5 +      | 22           |         | 2       | 35'786.20  |   |
|                       | 5        | Plus         |         | 3       | 15'572.25  | ٠ |
| Jackpot               | 5        |              |         | 57      |            |   |
| CHF 800'000           | 4        | Plus         |         | 507     | 100.00     | • |
|                       | 4        |              |         | 2'897   |            |   |
| Jackpot mit Plus      | 3        | Plus         |         | 9'321   | 12.00      | • |
| CHF 4'100'000 *       | 3        |              |         | 47'617  | 6.00       |   |
| JETZT SPIELEN-        | 2        | Plus         |         | 58'8'99 | 2.00       |   |
| * kumulierte Gewinnqu | oten     |              |         |         |            |   |
| JOKER                 | ¢        | 000          | 00      |         |            |   |

Precise Probabilities

Imprecise Probabilities

Credal Sets



Post Scriptum My personal P(X = true)is one which means I have a kid (and I know that) Introducing IPs

Precise Probabilities

Imprecise Probabilities

Credal Sets

# BREAK

| $\overline{P}(x)$<br>minimum<br>selling<br>price | $\frac{\underline{P}(x)}{\underset{\text{buying}}{\text{maximum}}}$ | / |
|--------------------------------------------------|---------------------------------------------------------------------|---|

Walley's proposal for imprecision

No strong reasons for that rationality only requires  $\underline{P}(x) \leq \overline{P}(x)$ 

• Avoid sure loss! With max buying prices  $\underline{P}(A)$  and  $\underline{P}(A^c)$ , you can buy both gambles and earn one for sure:

 $\underline{P}(A) + \underline{P}(A^c) \le 1$ 

• Be coherent! When buying both A and B, you pay  $\underline{P}(A) + \underline{P}(B)$  and you have a gamble which gives one if  $A \cup B$  occurs:

 $\underline{P}(A \cup B) \geq \underline{P}(A) + \underline{P}(B)$ 

| De Finetti's<br>dogma | precision    |
|-----------------------|--------------|
| $\overline{P}(x)$     | <u>P</u> (x) |

| ( )     | . ,      |
|---------|----------|
| minimum | <u> </u> |
| selling | buying   |
| price   | price    |

Walley's proposal for imprecision

No strong reasons for that rationality only requires  $\underline{P}(x) \leq \overline{P}(x)$ 

• Avoid sure loss! With max buying prices  $\underline{P}(A)$  and  $\underline{P}(A^c)$ , you can buy both gambles and earn one for sure:

 $\underline{P}(A) + \underline{P}(A^c) \le 1$ 

• Be coherent! When buying both A and B, you pay  $\underline{P}(A) + \underline{P}(B)$  and you have a gamble which gives one if  $A \cup B$  occurs:

 $\underline{P}(A \cup B) \geq \underline{P}(A) + \underline{P}(B)$ 

| De Finetti's p<br>dogma | recision           |
|-------------------------|--------------------|
| $\overline{P}(x)$       | $\underline{P}(x)$ |

| . ()    | _( )     |
|---------|----------|
| minimum | <u> </u> |
| selling | buying   |
| price   | price    |

Walley's proposal for imprecision

No strong reasons for that rationality only requires  $\underline{P}(x) \leq \overline{P}(x)$ 

• Avoid sure loss! With max buying prices <u>P</u>(A) and <u>P</u>(A<sup>c</sup>), you can buy both gambles and earn one for sure:

 $\underline{P}(A) + \underline{P}(A^c) \le 1$ 

• Be coherent! When buying both A and B, you pay  $\underline{P}(A) + \underline{P}(B)$  and you have a gamble which gives one if  $A \cup B$  occurs:

 $\underline{P}(A \cup B) \geq \underline{P}(A) + \underline{P}(B)$ 

| De Finetti's pr   | ecision            |
|-------------------|--------------------|
| dogma             |                    |
| $\overline{P}(x)$ | $\underline{P}(x)$ |

| ( )     | _( )     |
|---------|----------|
| minimum | <u> </u> |
| selling | buying   |
| price   | price    |

Walley's proposal for imprecision

No strong reasons for that rationality only requires  $\underline{P}(x) \leq \overline{P}(x)$ 

• Avoid sure loss! With max buying prices  $\underline{P}(A)$  and  $\underline{P}(A^c)$ , you can buy both gambles and earn one for sure:

 $\underline{P}(A) + \underline{P}(A^c) \leq 1$ 

• Be coherent! When buying both A and B, you pay  $\underline{P}(A) + \underline{P}(B)$  and you have a gamble which gives one if  $A \cup B$  occurs:

 $\underline{P}(A \cup B) \geq \underline{P}(A) + \underline{P}(B)$ 

buying

price

## (subjective, behavioural) imprecise probabilities

| De Finetti's<br>dogma | precision    |
|-----------------------|--------------|
| $\overline{P}(x)$     | <u>P</u> (x) |
| minimum               | = maximum    |

selling

price

Walley's proposal for imprecision

No strong reasons for that rationality only requires  $\underline{P}(x) \leq \overline{P}(x)$ 

• Avoid sure loss! With max buying prices  $\underline{P}(A)$  and  $\underline{P}(A^c)$ , you can buy both gambles and earn one for sure:

 $\underline{P}(A) + \underline{P}(A^c) \leq 1$ 

• Be coherent! When buying both A and B, you pay  $\underline{P}(A) + \underline{P}(B)$  and you have a gamble which gives one if  $A \cup B$  occurs:

 $\underline{P}(A \cup B) \geq \underline{P}(A) + \underline{P}(B)$ 

buying

price

## (subjective, behavioural) imprecise probabilities

| De Finetti's p<br>dogma | precision    |
|-------------------------|--------------|
| $\overline{P}(x)$       | <u>P</u> (x) |
| minimum                 | = maximum    |

selling

price

Walley's proposal for imprecision

No strong reasons for that rationality only requires  $\underline{P}(x) \leq \overline{P}(x)$ 

• Avoid sure loss! With max buying prices  $\underline{P}(A)$  and  $\underline{P}(A^c)$ , you can buy both gambles and earn one for sure:

 $\underline{P}(A) + \underline{P}(A^c) \leq 1$ 

• Be coherent! When buying both A and B, you pay  $\underline{P}(A) + \underline{P}(B)$  and you have a gamble which gives one if  $A \cup B$  occurs:

 $\underline{P}(A \cup B) \geq \underline{P}(A) + \underline{P}(B)$ 

## Reasons for imprecise probabilities

- Reflect the amount of information on which probe are based
- Uniform probs model indifference not ignorance
- When doing introspection, sometimes indecision/indeterminacy
- Easier to assess (e.g., qualitative knowledge, combining beliefs)
   Assessing precise probs could be possible in principle, but not in practice because of our bounded rationality
- Natural extension of precise models defined on some events determine only imprecise probabilities for events outside
- Robustness in statistics (multiple priors/likelihoods) and decision problems (multiple prob distributions/utilities)

## Credal sets (Levi, 1980) as IP models

- Without the precision dogma, incomplete knowledge described by (credal) sets of probability mass functions
- Induced by a finite number of assessments (I/u gambles prices) which are linear constraints on the consistent probabilities
- Sets of consistent (precise) probability mass functions convex with a finite number of extremes (if |Ω| < +∞)</li>
- E.g., no constraints ⇒ vacuous credal set (model of ignorance)

$$\mathcal{K}(X) = \left\{ P(X) \middle| \begin{array}{c} \sum_{x \in \Omega} P(x) = 1 \\ P(x) \ge 0 \end{array} \right\}$$

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{i=1}^{V}$  of the feasible region
- The credal set K(X) is ConvHull{ $P_j(X)$ }
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

LP task: optimum on the extremes of K(X)

#### Computing expectations on credal sets

- Constrained optimization problem, or
- Combinatorial optimization on the extremes space (# of extremes can be exponential in # of constraints)

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{j=1}^{v}$  of the feasible region
- The credal set K(X) is ConvHull{P<sub>j</sub>(X)}<sup>v</sup><sub>j=1</sub>
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

LP task: optimum on the extremes of K(X)

#### Computing expectations on credal sets

- Constrained optimization problem, or
- Combinatorial optimization on the extremes space (# of extremes can be exponential in # of constraints)

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{i=1}^{v}$  of the feasible region
- The credal set K(X) is ConvHull{ $P_j(X)$ }
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

LP task: optimum on the extremes of K(X)

#### Computing expectations on credal sets

• Constrained optimization problem, or

 Combinatorial optimization on the extremes space (# of extremes can be exponential in # of constraints)

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{j=1}^{v}$  of the feasible region
- The credal set K(X) is ConvHull{ $P_j(X)$ }
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

LP task: optimum on the extremes of K(X)

Computing expectations on credal sets

• Constrained optimization problem, or

 Combinatorial optimization on the extremes space (# of extremes can be exponential in # of constraints)
#### Natural extension

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{j=1}^{v}$  of the feasible region
- The credal set K(X) is ConvHull{ $P_j(X)$ }
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in \mathcal{K}(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

LP task: optimum on the extremes of K(X)

Computing expectations on credal sets

• Constrained optimization problem, or

 Combinatorial optimization on the extremes space (# of extremes can be exponential in # of constraints)

#### Natural extension

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{j=1}^{v}$  of the feasible region
- The credal set K(X) is ConvHull{ $P_j(X)$ }
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in \mathcal{K}(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

#### LP task: optimum on the extremes of K(X)

Computing expectations on credal sets

• Constrained optimization problem, or

Combinatorial optimization on the extremes space
 (# of extremes can be exponential in # of constraints)

### Natural extension

- Price assessments are linear constraints on probabilities (e.g.,  $\underline{P}(f) = .21$  means  $\sum_{x} P(x)f(x) \ge .21$ )
- Compute the extremes  $\{P_j(X)\}_{j=1}^{v}$  of the feasible region
- The credal set K(X) is ConvHull{ $P_j(X)$ }
- Lower prices/expectations of any gamble/function of/on X

$$\underline{P}(h) = \min_{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) \cdot h(x)$$

LP task: optimum on the extremes of K(X)

#### Computing expectations on credal sets

- Constrained optimization problem, or
- Combinatorial optimization on the extremes space (# of extremes can be exponential in # of constraints)

### Lower-upper conjugacy

E.g., with events

$$\underline{P}(A) = \min_{P(X) \in K(X)} \sum_{x \in A} P(x)$$

$$\overline{P}(A^c) = \max_{P(X) \in K(X)} \sum_{x \notin A} P(x) = \max_{P(X) \in K(X)} \left[ 1 - \sum_{x \in A} P(x) \right] = 1 - \underline{P}(A)$$

For gambles, similarly,

$$\overline{P}(-f) = -\underline{P}(f)$$

$$\underline{P}(f) = \min_{P(X) \in K(X)} \sum_{x} P(x)f(x)$$
$$\overline{P}(-f) = \max_{P(X) \in K(X)} \sum_{x} [-P(x)f(x)] = -\min_{P(X) \in K(X)} \sum_{x} P(x)f(x)$$

### Lower-upper conjugacy

E.g., with events

$$\underline{P}(A) = \min_{P(X) \in K(X)} \sum_{x \in A} P(x)$$

$$\overline{P}(A^c) = \max_{P(X) \in K(X)} \sum_{x \notin A} P(x) = \max_{P(X) \in K(X)} \left[ 1 - \sum_{x \in A} P(x) \right] = 1 - \underline{P}(A)$$

For gambles, similarly,

$$\overline{P}(-f) = -\underline{P}(f)$$

$$\underline{P}(f) = \min_{P(X) \in K(X)} \sum_{x} P(x)f(x)$$
$$\overline{P}(-f) = \max_{P(X) \in K(X)} \sum_{x} [-P(x)f(x)] = -\min_{P(X) \in K(X)} \sum_{x} P(x)f(x)$$

### Lower-upper conjugacy

E.g., with events

$$\underline{P}(A) = \min_{P(X) \in K(X)} \sum_{x \in A} P(x)$$

$$\overline{P}(A^c) = \max_{P(X) \in \mathcal{K}(X)} \sum_{x \notin A} P(x) = \max_{P(X) \in \mathcal{K}(X)} \left[ 1 - \sum_{x \in A} P(x) \right] = 1 - \underline{P}(A)$$

For gambles, similarly,

$$\overline{P}(-f) = -\underline{P}(f)$$

$$\underline{P}(f) = \min_{P(X) \in K(X)} \sum_{x} P(x)f(x)$$
$$\overline{P}(-f) = \max_{P(X) \in K(X)} \sum_{x} [-P(x)f(x)] = -\min_{P(X) \in K(X)} \sum_{x} P(x)f(x)$$

### Lower-upper conjugacy

E.g., with events

$$\underline{P}(A) = \min_{P(X) \in K(X)} \sum_{x \in A} P(x)$$

$$\overline{P}(A^c) = \max_{P(X) \in \mathcal{K}(X)} \sum_{x \notin A} P(x) = \max_{P(X) \in \mathcal{K}(X)} \left[ 1 - \sum_{x \in A} P(x) \right] = 1 - \underline{P}(A)$$

For gambles, similarly,

$$\overline{P}(-f) = -\underline{P}(f)$$

$$\underline{P}(f) = \min_{P(X) \in \mathcal{K}(X)} \sum_{x} P(x)f(x)$$
$$\overline{P}(-f) = \max_{P(X) \in \mathcal{K}(X)} \sum_{x} \left[-P(x)f(x)\right] = -\min_{P(X) \in \mathcal{K}(X)} \sum_{x} P(x)f(x)$$

• Boolean X, values in  $\mathcal{X} = \{x, \neg x\}$ 

- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1\\ 0 \end{bmatrix}$



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1\\ 0 \end{bmatrix}$



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1\\ 0 \end{bmatrix}$
- Uncertainty  $\equiv$  prob mass function  $P(X) = \begin{bmatrix} p \\ 1-p \end{bmatrix}$  with  $p \in [0, 1]$



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Uncertainty  $\equiv$  prob mass function  $P(X) = \begin{bmatrix} p \\ 1-p \end{bmatrix}$  with  $p \in [0, 1]$



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Uncertainty  $\equiv$  prob mass function  $P(X) = \begin{bmatrix} p \\ 1-p \end{bmatrix}$  with  $p \in [0, 1]$



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1\\ 0 \end{bmatrix}$
- Uncertainty  $\equiv$  prob mass function  $P(X) = \begin{bmatrix} p \\ 1-p \end{bmatrix}$  with  $p \in [0, 1]$
- Imprecision credal set on the *probability simplex*



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Uncertainty  $\equiv$  prob mass function  $P(X) = \begin{bmatrix} p \\ 1-p \end{bmatrix}$  with  $p \in [0, 1]$
- Imprecision credal set on the *probability simplex*

$$K(X) \equiv \left\{ P(X) = \left[ \begin{array}{c} p \\ 1-p \end{array} \right] \left| .4 \le p \le .7 \right\} \right\}$$



- Boolean *X*, values in  $\mathcal{X} = \{x, \neg x\}$
- Determinism  $\equiv$  degenerate mass f E.g.,  $X = x \iff P(X) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Uncertainty  $\equiv$  prob mass function  $P(X) = \begin{bmatrix} p \\ 1-p \end{bmatrix}$  with  $p \in [0, 1]$
- Imprecision credal set on the *probability simplex*

$$K(X) \equiv \left\{ P(X) = \left[ \begin{array}{c} p \\ 1-p \end{array} \right] \left| .4 \le p \le .7 \right\} \right\}$$

• A CS over a Boolean variable cannot have more than two vertices!

$$\operatorname{ext}[\mathcal{K}(X)] = \left\{ \left[ \begin{array}{c} .7\\ .3 \end{array} \right], \left[ \begin{array}{c} .4\\ .6 \end{array} \right] \right\}$$



- Ternary X (e.g.,  $\Omega = \{win, draw, loss\}$ )
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective ≡ IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective = IP statements



- Ternary X (e.g.,  $\Omega = \{win, draw, loss\}$ )
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective = IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective ≡ IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective ≡ IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective = IP statements





- Ternary X (e.g.,  $\Omega = \{win, draw, loss\}$ )
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective = IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements:
     adjective ≡ IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw,
    - which more probable than loss
  - Qualitative judgements: adjective ≡ IP statements



- Ternary X (e.g., Ω = {win,draw,loss})
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements: adjective ≡ IP statements



- Ternary X (e.g.,  $\Omega = \{win, draw, loss\}$ )
- $P(X) \equiv \text{point in the space (simplex)}$
- No bounds to |ext[K(X)]|
- Modelling ignorance
  - Uniform models indifference
  - Vacuous credal set
- Expert qualitative knowledge
  - Comparative judgements: win is more probable than draw, which more probable than loss
  - Qualitative judgements: adjective = IP statements

# From natural language to linear constraints on probabilities

(Walley, 1991)

extremely probable P(x) > 0.98very high probability P(x) > 0.9highly probable P(x) > 0.85very probable P(x) > 0.75has a very good chance  $P(x) \ge 0.65$ quite probable  $P(x) \ge 0.6$ probable P(x) > 0.5has a good chance 0.4 < P(x) < 0.85is improbable (unlikely) P(x) < 0.5is somewhat unlikely P(x) < 0.4is very unlikely P(x) < 0.25has little chance  $P(x) \leq 0.2$ is highly improbable P(x) < 0.15is has very low probability P(x) < 0.1is extremely unlikely P(x) < 0.02

- Two Boolean variables: Smoker, Lung Cancer
- 8 "Bayesian" physicians, each assessing  $P_j(S, C)$  $K(S, C) = CH \{P_j(S, C)\}_{j=1}^8$

| 4 |     |     |     |     |
|---|-----|-----|-----|-----|
|   | 1/4 | 1/4 | 1/4 | 1/4 |
|   | 1/4 | 1/4 |     |     |
|   |     |     | 1/4 | 1/4 |
|   |     |     |     |     |

$$K(C) = CH\left\{\sum_{s} P_j(C,s)\right\}_{j=1}^8 \frac{1}{2} \le P(c) \le \frac{3}{4}$$



- Two Boolean variables: Smoker, Lung Cancer
- 8 "Bayesian" physicians, each assessing *P<sub>j</sub>*(*S*, *C*) *K*(*S*, *C*) = CH {*P<sub>j</sub>*(*S*, *C*)}<sup>8</sup><sub>j=1</sub>

| 4 |     |     |     |     |
|---|-----|-----|-----|-----|
|   | 1/4 | 1/4 | 1/4 | 1/4 |
|   | 1/4 | 1/4 |     |     |
|   |     |     | 1/4 | 1/4 |
|   |     |     |     |     |

$$\mathcal{K}(C) = CH\left\{\sum_{s} P_j(C,s)
ight\}_{j=1}^8 rac{1}{2} \le P(c) \le rac{3}{4}$$



- Two Boolean variables: Smoker, Lung Cancer
- 8 "Bayesian" physicians, each assessing *P<sub>j</sub>*(*S*, *C*) *K*(*S*, *C*) = CH {*P<sub>j</sub>*(*S*, *C*)}<sup>8</sup><sub>j=1</sub>

| j | $P_j(s, c)$ | $P_j(s, \overline{c})$ | $P_j(\overline{s}, c)$ | $P_j(\overline{s}, \overline{c})$ |
|---|-------------|------------------------|------------------------|-----------------------------------|
| 1 | 1/8         | 1/8                    | 3/8                    | 3/8                               |
| 2 | 1/8         | 1/8                    | 9/16                   | 3/16                              |
| 3 | 3/16        | 1/16                   | 3/8                    | 3/8                               |
| 4 | 3/16        | 1/16                   | 9/16                   | 3/16                              |
| 5 | 1/4         | 1/4                    | 1/4                    | 1/4                               |
| 6 | 1/4         | 1/4                    | 3/8                    | 1/8                               |
| 7 | 3/8         | 1/8                    | 1/4                    | 1/4                               |
| 8 | 3/8         | 1/8                    | 3/8                    | 1/8                               |

$$\mathcal{K}(\mathcal{C}) = \mathcal{C}\mathcal{H}\left\{\sum_{s} \mathcal{P}_j(\mathcal{C},s)\right\}_{j=1}^8 \frac{1}{2} \le \mathcal{P}(\mathcal{C}) \le \frac{3}{4}$$



- Two Boolean variables: Smoker, Lung Cancer
- 8 "Bayesian" physicians, each assessing *P<sub>j</sub>*(*S*, *C*) *K*(*S*, *C*) = CH {*P<sub>j</sub>*(*S*, *C*)}<sup>8</sup><sub>j=1</sub>

| j | $P_j(s, c)$ | $P_j(s, \overline{c})$ | $P_j(\overline{s}, c)$ | $P_j(\overline{s}, \overline{c})$ |
|---|-------------|------------------------|------------------------|-----------------------------------|
| 1 | 1/8         | 1/8                    | 3/8                    | 3/8                               |
| 2 | 1/8         | 1/8                    | 9/16                   | 3/16                              |
| 3 | 3/16        | 1/16                   | 3/8                    | 3/8                               |
| 4 | 3/16        | 1/16                   | 9/16                   | 3/16                              |
| 5 | 1/4         | 1/4                    | 1/4                    | 1/4                               |
| 6 | 1/4         | 1/4                    | 3/8                    | 1/8                               |
| 7 | 3/8         | 1/8                    | 1/4                    | 1/4                               |
| 8 | 3/8         | 1/8                    | 3/8                    | 1/8                               |

$$\mathcal{K}(C) = CH\left\{\sum_{s} P_j(C,s)\right\}_{j=1}^8 \frac{1}{2} \le P(c) \le \frac{3}{4}$$



- Two Boolean variables: Smoker, Lung Cancer
- 8 "Bayesian" physicians, each assessing *P<sub>j</sub>*(*S*, *C*) *K*(*S*, *C*) = CH {*P<sub>j</sub>*(*S*, *C*)}<sup>8</sup><sub>j=1</sub>

| j | $P_j(s, c)$ | $P_j(s, \overline{c})$ | $P_j(\overline{s}, c)$ | $P_j(\overline{s}, \overline{c})$ |
|---|-------------|------------------------|------------------------|-----------------------------------|
| 1 | 1/8         | 1/8                    | 3/8                    | 3/8                               |
| 2 | 1/8         | 1/8                    | 9/16                   | 3/16                              |
| 3 | 3/16        | 1/16                   | 3/8                    | 3/8                               |
| 4 | 3/16        | 1/16                   | 9/16                   | 3/16                              |
| 5 | 1/4         | 1/4                    | 1/4                    | 1/4                               |
| 6 | 1/4         | 1/4                    | 3/8                    | 1/8                               |
| 7 | 3/8         | 1/8                    | 1/4                    | 1/4                               |
| 8 | 3/8         | 1/8                    | 3/8                    | 1/8                               |

$$\mathcal{K}(\mathcal{C}) = \mathcal{C}\mathcal{H}\left\{\sum_{s} \mathcal{P}_j(\mathcal{C},s)
ight\}_{j=1}^8 rac{1}{2} \leq \mathcal{P}(\mathcal{C}) \leq rac{3}{4}$$



Credal sets induced by probability intervals

• Assessing lower and upper probabilities:  $[I_x, u_x]$ , for each  $x \in \Omega$ 

The consistent credal set is

$$\mathcal{K}(X) := \left\{ \begin{array}{c} P(X) \\ P(X) \\ P(X) \ge 0 \\ \sum_{x} P(x) = 1 \end{array} \right\}$$

Avoiding sure loss implies non-emptiness of the credal set

$$\sum_{x} I_x \le 1 \le \sum_{x} U_x$$

Coherence implies the reachability (bounds are tight)

$$u_x + \sum_{x' \neq x} l_x \le 1 \qquad l_x + \sum_{x' \neq x} u_x \ge 1$$

Credal sets induced by probability intervals

- Assessing lower and upper probabilities:  $[I_x, u_x]$ , for each  $x \in \Omega$
- The consistent credal set is

$$\mathcal{K}(X) := \left\{ \begin{array}{l} \mathcal{P}(X) \\ \mathcal{P}(X) \geq 0 \\ \sum_{x} \mathcal{P}(x) = 1 \end{array} \right\}$$

Avoiding sure loss implies non-emptiness of the credal set

$$\sum_{x} I_x \le 1 \le \sum_{x} U_x$$

Coherence implies the reachability (bounds are tight)

$$u_x + \sum_{x' \neq x} l_x \le 1 \qquad l_x + \sum_{x' \neq x} u_x \ge 1$$

Credal sets induced by probability intervals

- Assessing lower and upper probabilities:  $[I_x, u_x]$ , for each  $x \in \Omega$
- The consistent credal set is

$$\mathcal{K}(X) := \left\{ \begin{array}{l} P(X) \\ P(X) \\ \sum_{x} P(x) = 1 \end{array} \right\}$$

Avoiding sure loss implies non-emptiness of the credal set

$$\sum_{x} l_{x} \leq 1 \leq \sum_{x} u_{x}$$

Coherence implies the reachability (bounds are tight)

$$u_x + \sum_{x' \neq x} l_x \le 1 \qquad l_x + \sum_{x' \neq x} u_x \ge 1$$
Introducing IPs

Credal sets induced by probability intervals

- Assessing lower and upper probabilities:  $[I_x, u_x]$ , for each  $x \in \Omega$
- The consistent credal set is

$$\mathcal{K}(X) := \left\{ \begin{array}{l} P(X) \\ P(X) \\ \sum_{x} P(x) = 1 \end{array} \right\}$$

Avoiding sure loss implies non-emptiness of the credal set

$$\sum_{x} l_{x} \leq 1 \leq \sum_{x} u_{x}$$

• Coherence implies the reachability (bounds are tight)

$$u_x + \sum_{x' \neq x} l_x \leq 1$$
  $l_x + \sum_{x' \neq x} u_x \geq 1$ 

# Refining assessments (when possible)















# Refining assessments (when possible)

































- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$
- Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )

#### • Learning from data about X

- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$
- Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )

 $\begin{array}{c} n(win) \\ n(draw) \\ n(loss) \end{array} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$ 

 1957:
 Spain vs. Italy 5 - 1

 1972:
 Italy vs. Spain 3 - 2

 1980:
 Spain vs. Italy 1 - 0

 1983:
 Spain vs. Italy 1 - 0

 1983:
 Italy vs. Spain 2 - 1

 1987:
 Spain vs. Italy 1 - 1

 2001:
 Spain vs. Italy 1 - 2

 2001:
 Italy vs. Spain 1 - 0

- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$

• Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )



 1957:
 Spain vs.
 Italy 5 - 1

 1973:
 Italy vs.
 Spain 3 - 2

 1980:
 Spain vs.
 Italy 1 - 0

 1983:
 Spain vs.
 Italy 1 - 0

 1983:
 Italy vs.
 Spain 2 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 2000:
 Spain vs.
 Italy 1 - 2

- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x) + st(x)}{N}$

Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )



 1957:
 Spain vs.
 Italy 5 - 1

 1973:
 Italy vs.
 Spain 3 - 2

 1980:
 Spain vs.
 Italy 1 - 0

 1983:
 Spain vs.
 Italy 1 - 0

 1983:
 Italy vs.
 Spain 2 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 2000:
 Spain vs.
 Italy 1 - 2

 2001:
 Italy vs.
 Spain 1 - 0

- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$
- Imprecise: set of priors (vacuous t)



imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )



 1957:
 Spain vs.
 Italy 5 - 1

 1973:
 Italy vs.
 Spain 3 - 2

 1980:
 Spain vs.
 Italy 1 - 0

 1983:
 Spain vs.
 Italy 1 - 0

 1983:
 Italy vs.
 Spain 2 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 2000:
 Spain vs.
 Italy 1 - 2

 2001:
 Italy vs.
 Spain 1 - 0

- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$
- Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )



 1957:
 Spain vs.
 Italy 5 - 1

 1973:
 Italy vs.
 Spain 3 - 2

 1980:
 Spain vs.
 Italy 1 - 0

 1983:
 Spain vs.
 Italy 1 - 0

 1983:
 Italy vs.
 Spain 2 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 2000:
 Spain vs.
 Italy 1 - 2

- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$
- Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )



 1957:
 Spain vs.
 Italy 5 - 1

 1973:
 Italy vs.
 Spain 3 - 2

 1980:
 Spain vs.
 Italy 1 - 0

 1983:
 Spain vs.
 Italy 1 - 0

 1983:
 Italy vs.
 Spain 2 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 2000:
 Spain vs.
 Italy 1 - 2

 2001:
 Italy vs.
 Spain 1 - 0

- Learning from data about X
- Max lik estimate  $P(x) = \frac{n(x)}{N}$
- Bayesian (ESS s = 2)  $\frac{n(x)+st(x)}{N}$
- Imprecise: set of priors (vacuous t)

$$\frac{n(x)}{N+s} \le P(x) \le \frac{n(x)+s}{N+s}$$

imprecise Dirichlet model (Walley & Bernard)

- They a.s.l. and are coherent
- Non-negligible size of intervals only for small N(Bayesian for  $N \to \infty$ )



 1957:
 Spain vs.
 Italy 5 - 1

 1973:
 Italy vs.
 Spain 3 - 2

 1980:
 Spain vs.
 Italy 1 - 0

 1983:
 Spain vs.
 Italy 1 - 0

 1983:
 Italy vs.
 Spain 2 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 1987:
 Spain vs.
 Italy 1 - 1

 2000:
 Spain vs.
 Italy 1 - 2

 2001:
 Italy vs.
 Spain 1 - 0

- Coping with missing data?
- Missing at random (MAR)
   P(O = \*|X = x) indep of X
   Ignore missing data
- Not always the case!
- Conservative updating (Gert & Zaffalon) ignorance about the process P(O|X) as a vacuous model
- Consider all the explanations (and take the convex hull)

#### Coping with missing data?

- Missing at random (MAR) P(O = \*|X = x) indep of X Ignore missing data
- Not always the case!
- Conservative updating (Gert & Zaffalon) ignorance about the process P(O|X) as a vacuous model
- Consider all the explanations (and take the convex hull)

 1957:
 Spain vs. Italy 5 - 1

 1973:
 Italy vs. Spain 3 - 2

 1980:
 Spain vs. Italy 1 - 0

 1983:
 Italy vs. Spain 2 - 1

 1983:
 Italy vs. Spain 2 - 1

 1987:
 Spain vs. Italy 1 - 1

 2000:
 Spain vs. Italy 1 - 1

 2000:
 Spain vs. Italy 1 - 2

 2001:
 Italy vs. Spain 1 - 0

 2003:
 Spain vs. Italy \* - \*

 2011:
 Italy vs. Spain 1 - 0

- Coping with missing data?
- Missing at random (MAR) P(O = \*|X = x) indep of X Ignore missing data
- Not always the case!
- Conservative updating (Gert & Zaffalon) ignorance about the process P(O|X) as a vacuous model
- Consider all the explanations (and take the convex hull)



| 1957: | Spain vs. Italy | 5 - 1 |
|-------|-----------------|-------|
| 1973: | Italy vs. Spain |       |
| 1980: | Spain vs. Italy | 1 - 0 |
| 1983: | Spain vs. Italy | 1 - 0 |
| 1983: | Italy vs. Spain | 2 - 1 |
| 1987: | Spain vs. Italy | 1 - 1 |
| 2000: | Spain vs. Italy | 1 – 2 |
| 2001: | Italy vs. Spain | 1 - 0 |
| 2003: | Spain vs. Italy | * - * |
| 2011: | Italy vs. Spain | * - * |
|       |                 |       |

- Coping with missing data?
- Missing at random (MAR)
   P(O = \*|X = x) indep of X
   Ignore missing data
- Not always the case!
- Conservative updating (Gert & Zaffalon) ignorance about the process P(O|X) as a vacuous model
- Consider all the explanations (and take the convex hull)



| 1957: | Spain vs. Italy | 5 — 1 |
|-------|-----------------|-------|
| 1973: | Italy vs. Spain | 3 - 2 |
| 1980: | Spain vs. Italy | 1 — 0 |
| 1983: | Spain vs. Italy |       |
| 1983: | Italy vs. Spain |       |
| 1987: | Spain vs. Italy |       |
| 2000: | Spain vs. Italy | 1 — 2 |
| 2001: | Italy vs. Spain | 1 — 0 |
| 2003: | Spain vs. Italy |       |
| 2011: | Italy vs. Spain | * - * |
|       |                 |       |

- Coping with missing data?
- Missing at random (MAR) P(O = \*|X = x) indep of X Ignore missing data
- Not always the case!
- Conservative updating (Gert & Zaffalon) ignorance about the process P(O|X) as a vacuous model
- Consider all the explanations (and take the convex hull)



| 1957: | Spain vs. Italy | 5 - 1 |
|-------|-----------------|-------|
| 1973: | Italy vs. Spain | 3 - 2 |
| 1980: | Spain vs. Italy | 1 — 0 |
| 1983: | Spain vs. Italy | 1 — 0 |
| 1983: | Italy vs. Spain | 2 - 1 |
| 1987: | Spain vs. Italy | 1 – 1 |
| 2000: | Spain vs. Italy |       |
| 2001: | Italy vs. Spain |       |
| 2003: | Spain vs. Italy | * - * |
| 2011: | Italy vs. Spain | * - * |
|       |                 |       |

- Coping with missing data?
- Missing at random (MAR) P(O = \*|X = x) indep of X Ignore missing data
- Not always the case!
- Conservative updating (Gert & Zaffalon) ignorance about the process P(O|X) as a vacuous model
- Consider all the explanations (and take the convex hull)



| 1957: | Spain vs. Italy | 5 - 1 |
|-------|-----------------|-------|
| 1973: | Italy vs. Spain | 3 - 2 |
| 1980: | Spain vs. Italy | 1 — 0 |
| 1983: | Spain vs. Italy | 1 — 0 |
| 1983: | Italy vs. Spain | 2 - 1 |
| 1987: | Spain vs. Italy | 1 – 1 |
| 2000: | Spain vs. Italy | 1 — 2 |
| 2001: | Italy vs. Spain | 1 — 0 |
| 2003: | Spain vs. Italy | * - * |
| 2011: | Italy vs. Spain | * - * |
|       |                 |       |