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Outline and scheduling

@ An informal introduction to IPs

o Reasoning with (imprecise) fault trees

o From determinism to imprecision (through uncertainty)
@ What probability is? (aka does probability exists?)

o Subjective vs. Objective

e Behavioural interpretation of subjective probability

o Prices, probabilities, previsions
@ What imprecise probability is?

o Reasons for imprecise probabilities

@ Avoiding sure loss, coherence and natural extension

o Credal sets
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Reasoning: from Determinism to IPs

brake fails = [ pads V ( sensor A controller A actuator ) ]

sensor [ controller[ actuator
fails fails fails

with [.7, 1] instead
P(brake fails)e[.49,1]
Indecision!

64,1]

devices failures are independent
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o FIFA’12 final match between ltaly and Spain
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DETERMINISM

The Spanish goalkeeper
is unbeatable and ltaly
always receives a goal

Spain (certainly) wins

P(Win) 1
P(Draw) = [ 0 ]

P(Loss) 0
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Three different levels of knowledge

o FIFA’12 final match between ltaly and Spain
@ Result of Spain after the regular time? Win, draw or loss?

DETERMINISM UNCERTAINTY

The Spanish goalkeeper Win is two times more
is unbeatable and ltaly probable than draw, and
always receives a goal this being three times

more probable than loss
Spain (certainly) wins

. P(Win) .6
";&Vyrlggv) _ (1) P(Draw) = [ 3 ]
P(Loss) 0 P(Loss) 1
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Three different levels of knowledge

o FIFA’12 final match between ltaly and Spain
@ Result of Spain after the regular time? Win, draw or loss?

DETERMINISM UNCERTAINTY IMPRECISION

The Spanish goalkeeper Win is two times more Win is more probable
is unbeatable and ltaly probable than draw, and than draw, and this is
always receives a goal this being three times more probable than loss

more probable than loss
Spain (certainly) wins P(Win) > P(Draw)
P(Draw) > P(Loss)

P(Win) 1 ggl")"r’;’a/) [ P(Win) 843+ 3
P(Draw) = | 0 P(LoSs) T P(Draw) =| & + 3
P(Loss) 0 ' P(Loss) L3

Ve, 8,7 such that
a>0,8>0,v>0,
a+pB+vy=1
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Precise Probabilities Imprecise Probabilities Credal Sets

Three different levels of knowledge

DETERMINISM

Propositional
(Boolean) Logic

UNCERTAINTY IMPRECISION

Smayy,
2SS (0 O
Nrey.,,  (Quay; S
et vy Pt
: COmpya. 10wy,
limit of infisite amount 6% 5, "%%e
of available:information "Vatiop,
(e.g., very large data sets)

S

Walley’s theory
of coherent
lower previsions

Bayesian prob-
ability theory

Natural Embedding (de Cooman)
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[- .. ] Bayesian inference will always be
a basic tool for practical everyday statistics ,

if only because questions must be answered
and decisions must be taken, so that a
statistician must always stand ready to upgrade
his vaguer forms of belief into precisely additive
probabilities

Art Dempster (in his foreword to Shafer’s book)
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Probability: one word for two (not exclusive) things

Randomness Partial knowledge
Variability captured through Incomplete information about
repeated observations issues of interest

Bayes and De Finetti

2

@ Chances o Beliefs

@ Feature of the world @ Feature of the observer

@ Aleatory or objective @ Epistemic or subjective

@ Frequentist theory @ Bayesian theory

@ Limiting frequencies @ Behaviour (bets dispositions)



Objective probability

@ X taking its values in (finite set) Q

@ Value X = x € Q as the output of an tteaiiidi
experiment which can be iterated T

@ Prob P(x) as limiting frequency

§ [
. X =x T
P(x):= lim #HX=X)
N—+o0 N r
@ Kolmogorov’s axioms follow from this o e o R T e

@ Probability as a property of the world @ VA€ 22, 0< PA) < 1
@ Not only (statistical and quantum) Q P(Q) =1
mechanics, hazard games (coins, Q@ VABc2 . ANB=J
dices, cards), but also economics, P(:é\\/ B) = P(A) + P(B)
bio/psycho/sociology, linguistics, etc.

@ But not all events can be iterated ...
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Probability in everyday life
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Anderson and Sullivan both will
'probably’ play for Herd

by Chuck McGill
Daly Mail sports writer

Economia
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Jintao e le prince" b
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HITNTINGTON W Va - Reaarding the anarterhack

Probabilities often pertains to singular events

not necessarily related to statistics
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Subjective probability

@ Probability p of me having a kid

@ Singular event: frequency unavailable 1ommmin
100,000,000 A |
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Subjective probability

@ Probability p of me having a kid

@ Singular event: frequency unavailable

@ Subjective probability o

1

Utiity Golies)
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o feature of the subject not of the world
o two subjects can assess different probs
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Subjective probability

@ Probability p of me having a kid
@ Singular event: frequency unavailable
@ Subjective probability
o models (partial) knowledge of a subject

o feature of the subject not of the world
@ two subjects can assess different probs

@ Quantitative measure of knowledge?

o Behavioural approach
o Subjective betting dispositions
o A (linear) utility function is needed

1
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Subjective probability

@ Probability p of me having a kid
@ Singular event: frequency unavailable
@ Subjective probability
o models (partial) knowledge of a subject

o feature of the subject not of the world
@ two subjects can assess different probs

@ Quantitative measure of knowledge?

o Behavioural approach
o Subjective betting dispositions
o A (linear) utility function is needed

@ Money?
@ Big money not linear!

@ Small, somehow yes
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Subjective probability

@ Probability p of me having a kid

@ Singular event: frequency unavailable
@ Subjective probability
o models (partial) knowledge of a subject
o feature of the subject not of the world
o two subjects can assess different probs
@ Quantitative measure of knowledge?
o Behavioural approach
o Subjective betting dispositions

o A (linear) utility function is needed

@ Money?
@ Big money not linear!
@ Small, somehow yes

utility Curve
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lottery tickets
X
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X
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infinite number of tickets
makes utility real-valued
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(Rationally) betting on gambles

@ Probabilities as dispositions to buy/sell gambles

@ Gambles (Anglo-Saxon world) are checks whose
amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child
zero otherwise

@ The bookie sells this gamble
@ Probability p as a price for the gamble

maximum price

Toosur— for which you buy the gamble

minimum price H . H
o Eur— for which you (bookie) sell it
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(Rationally) betting on gambles

@ Probabilities as dispositions to buy/sell gambles

@ Gambles (Anglo-Saxon world) are checks whose
amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child =fem 100 EUR
zero otherwise

@ The bookie sells this gamble
@ Probability p as a price for the gamble

maximum price
100EUR

o mmmambrice for which you (bookie) sell it = 0 EUR

for which you buy the gamble

@ Interpretation + rationality produce axioms
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(Rationally) betting on gambles

@ Probabilities as dispositions to buy/sell gambles

@ Gambles (Anglo-Saxon world) are checks whose
amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child =fem 100 EUR
zero otherwise = 95 EUR

Almost sure of
me having a kid

@ The bookie sells this gamble

@ Probability p as a price for the gamble Very doubtiul about
. X i me having a kid

% for which you buy the gamble === 8 EUR

o rEue— for which you (bookie) sell it m—e= (0 EUR

@ Interpretation + rationality produce axioms
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(Rationally) betting on gambles

@ Probabilities as dispositions to buy/sell gambles

@ Gambles (Anglo-Saxon world) are checks whose

amount is uncertain/unknown AN Gomblers sure loss
== 120 EUR

This check has a value of
100 EUR if Alessandro has a child =fem 100 EUR
zero otherwise

@ The bookie sells this gamble
@ Probability p as a price for the gamble

maximum price
100EUR

o mmmambrice for which you (bookie) sell it = 0 EUR

for which you buy the gamble

@ Interpretation + rationality produce axioms == -12EUR

Bookie's sure loss
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(Rationally) betting on gambles

@ Probabilities as dispositions to buy/sell gambles

@ Gambles (Anglo-Saxon world) are checks whose
amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child =fem 100 EUR
zero otherwise

= 95 EUR
@ The bookie sells this gamble e 55 EUR
o Probability p as a price for the gamble e e v &
madmumprice for which you buy the gamble
% for which you (bookie) sell it =mem () EUR

@ Interpretation + rationality produce axioms
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(Rationally) betting on gambles

@ Probabilities as dispositions to buy/sell gambles

@ Gambles (Anglo-Saxon world) are checks whose
amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child =fem 100 EUR
zero otherwise = 95 EUR
@ The bookie sells this gamble —t 55EUR
@ Probability p as a price for the gamble e !
% for which you buy the gamble
T ooeur— for which you (bookie) sell it === 0 EUR
@ Interpretation + rationality produce axioms You spend 150

EUR to (certainly)
win 100 EUR!



Coherence and linear previsions

Don’t be crazy: choose prices s.t.
there is always has a chance to win
(whatever the stakes set by the bookie)

Prices {PA,},’-\L1 forevents A, C Q,i=1,...,N are coherent iff
N
i[14.(X) — Pg] >
Teag; Ci[la,(X) — Pa] > 0

Moreover, assessments { P, }"Y , are coherent iff
@ Exists probability mass function P(X): P(A;) = Pa,

@ Or, for general gambles, linear functional P(f;) := P

— P(f) = Xxeq P(x) L)

linear prevision probability mass function
to be extended to a to be extended
coherent lower prevision to a credal set
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Coherence and linear previsions

Don’t be crazy: choose prices s.t.
there is always has a chance to win
(whatever the stakes set by the bookie)

Prices {Py,}N, forevents A, C Q,i=1,...,N are coherent iff
N
illa.(X) — Pa] >
Teaé; Cilla(X) — Pa] > 0

Moreover, assessments {Px, }"Y , are coherent iff
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Subjective P, if objective P exists?

@ Chances known =- beliefs coincide

@ Swiss lotto (45 nums): Xs next lotto’s 6-tuple
@ x{§ and xg your two guesses (6 + 6 nums)

0 P((Xs = x5) V (X6 = X)) ~ 1/4,000,000

@ You spend to have 1 CHF if you win

4,000,000 OOO 000

©

You spend to have s CHF if you win

2,000,000
2000000 = 3 CHFs = s = 12,000, 000

Worth play if jackpot > 12’000°000 CHFs

But

©

(]
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Post Scriptum

My personal
P(X = true)
is one
which means
| have a kid
(and | know that)




Precise Probabilities

BREAK
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(subjective, behavioural) imprecise probabilities

P(x) P(x)
minimum — maximum
seling ~—  buying

price price
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(subjective, behavioural) imprecise probabilities

P(x) P(x)

- : No strong reasons for that
L rationality only requires

selling buying P(x) < P(x)

price price



Imprecise Probabilities

(subjective, behavioural) imprecise probabilities

De Finetti’s precision Walley’s proposal for
dogma imprecision
P(x) P(x)
. . No strong reasons for that
L rationality only requires
selling buying P(x) < P(x)
price price =

@ Avoid sure loss! With max buying prices P(A) and P(A°®),
you can buy both gambles and earn one for sure:

P(A) + P(A°) <1
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(subjective, behavioural) imprecise probabilities

De Finetti’s precision Walley’s proposal for
dogma imprecision
P(x) P(x)
- , No strong reasons for that
L rationality only requires
selling buying P(x) < P(x)
price price -

@ Avoid sure loss! With max buying prices P(A) and P(A°),
you can buy both gambles and earn one for sure:

P(A) + P(A°) <1

@ Be coherent! When buying both A and B, you pay P(A) + P(B)
and you have a gamble which gives one if AU B occurs:

P(AUB) > P(A) + P(B)



Imprecise Probabilities

(subjective, behavioural) imprecise probabilities

De Finetti’s precision Walley’s proposal for
dogma imprecision
P(x) P(x)
- . No strong reasons for that
L rationality only requires
selling buying P(x) < P(x)
price price -

@ Avoid sure loss! With max buying prices P(A) and P(A°),
you can buy both gambles and earn one for sure:

P(A) + P(A°) <1

@ Be coherent! When buying both A and B, you pay P(A) + P(B)
and you have a gamble which gives one if AU B occurs:

P(AUB) > P(A) + P(B)

coherence self-consistency (beliefs revised if unsatisfied)
less problematic than a.s.|.



Imprecise Probabilities

Reasons for imprecise probabilities

o Reflect the amount of information on which probs are based
@ Uniform probs model indifference not ignorance
@ When doing introspection, sometimes indecision/indeterminacy

@ Easier to assess (e.g., qualitative knowledge, combining beliefs)
Assessing precise probs could be possible in principle, but not in
practice because of our bounded rationality

@ Natural extension of precise models defined on some events
determine only imprecise probabilities for events outside

@ Robustness in statistics (multiple priors/likelihoods) and
decision problems (multiple prob distributions/utilities)



Credal Sets

Credal sets (Levi, 1980) as IP models

@ Without the precision dogma, incomplete knowledge described

by (credal) sets of probability mass functions

@ Induced by a finite number of assessments (l/u gambles prices)
which are linear constraints on the consistent probabilities

@ Sets of consistent (precise) probability mass functions
convex with a finite number of extremes (if |Q| < 4o00)

@ E.g., no constraints = vacuous credal set (model of ignorance)

mm—{mm

> oxeq P(x) =1
P(x)>0
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Natural extension

@ Price assessments are linear constraints on probabilities
(e.g., P(f) = .21 means }_, P(x)f(x) > .21)
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Natural extension
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Natural extension

@ Price assessments are linear constraints on probabilities
(e.g., P(f) = .21 means }_, P(x)f(x) > .21)

o Compute the extremes {F;(X)}_; of the feasible region

@ The credal set K(X) is ConvHull{ P;(X)}/_,

@ Lower prices/expectations of any gamble/function of/on X

P(h) = P(x
B = iR 2, P
LP task: optimum on the extremes of K(X)

Computing expectations on credal sets

@ Constrained optimization problem, or
@ Combinatorial optimization on the extremes space

(# of extremes can be exponential in # of constraints)

Credal Sets
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Lower-upper conjugacy
E.g., with events

By = P(xr)nelﬂ()() Z Px)

XeEA

P(A°) = = P(x)| =1-P(A
P = 380 2 P = P(X";e,«x[ o> <X] A
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Lower-upper conjugacy
E.g., with events

PA) = P(XTGIQ(X) Z Px)

XEA
D Cc\ __ — —
P(A°) = n X”)‘S%(x% P(x) = n )g)]eK(X l Z P(x) ] =1—P(A)

For gambles, similarly,



Credal Sets

Lower-upper conjugacy
E.g., with events

PA) = P(Xr)nEIE(X) Z PO

XeEA

P(A%) = max > P()=_ max l ZP(X] =1-P(A)

P(X)eK(X) oyl

For gambles, similarly,

P(—f) = max Z —P(x ~ o fin ZPx)f

P(X)eK(X)



Credal Sets

Lower-upper conjugacy
E.g., with events

PA) = P(Xr)nEIE(X) Z PO

XeA
D C\ __ — — _
PA) = P(Q;S%(X))%P(X) P(X)GK(X [ Z P(x) ] =1-P(4)
For gambles, similarly,
P(—f) = —P(f)
= m|n Z P(x)f(x
P(—f) = ponax Z —P(x - m|n ZP

Self-conjugacy = single-point (precise) credal set = linear functional
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@ Boolean X, values in X = {x, —x} P(=x)
@ Determinism = degenerate mass f

Eg.,. X=x < P(X)= { g)}

@ Uncertainty = prob mass function
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@ Boolean X, values in X = {x, —x} P(=x)
@ Determinism = degenerate mass f
E.g.,X:X@P(X):[é} T

@ Uncertainty = prob mass function P(X) = [ .
P(X) = [ ] fp } with p € [0, 1]
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Credal Sets over Boolean Variables

@ Boolean X, values in X = {x, -x} P(=x)

@ Determinism = degenerate mass f
E.g.,X:x<:>P(X)={H T P(X)—['

@ Uncertainty = prob mass function
P(X) = [ ] fp } with p € [0, 1]




Credal Sets over Boolean Variables

@ Boolean X, values in X = {x, -x}

@ Determinism = degenerate mass f
Eg, X=x < P(X)= [ 2) }

@ Uncertainty = prob mass function
P(X) = [ ] fp } with p € [0,1]

@ Imprecision credal set
on the probability simplex

P(—\X)

Credal Sets
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Credal Sets over Boolean Variables

Boolean X, values in X = {x, -x} P(=x)
Determinism = degenerate mass f

E.g.,X:X<:>P(X):|:g)i| A

Uncertainty = prob mass function

6)----
P(X) = [ 1fp}withpe[0,1] ) \
T 7

Imprecision credal set
on the probability simplex

koo={Poo=[ P, |[4<p< 7}



Credal Sets

Credal Sets over Boolean Variables

Boolean X, values in X = {x, -x} P(=x)
Determinism = degenerate mass f

E.g.,X:X<:>P(X):|:g)i| A

Uncertainty = prob mass function

6)----
P(X) = [ 1fp}withpe[0,1] ) \
T 7

Imprecision credal set
on the probability simplex

koo={Poo=[ P, |[4<p< 7}

A CS over a Boolean variable cannot
have more than two vertices!

ext[K(X)] = {{ ﬁ; ]{ :g ]}



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Geometric Representation of CSs (ternary variables)

P(draw)

P(loss)



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Geometric Representation of CSs (ternary variables)

P(draw)
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Geometric Representation of CSs (ternary variables)

P(draw)

@ Ternary X (e.g., @ = {win,draw,loss})

@ P(X) = point in the space (simplex)

P(loss)

6
P(X) = [ 3 ]
Ry
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Geometric Representation of CSs (ternary variables)

P(draw)

@ Ternary X (e.g., @ = {win,draw,loss})
@ P(X) = point in the space (simplex)
@ No bounds to |ext[K(X)]|

@ Modelling ignorance

@ Uniform models indifference

Po(X) = 1oy
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Geometric Representation of CSs (ternary variables)

P(draw)

@ Ternary X (e.g., @ = {win,draw,loss})
@ P(X) = point in the space (simplex)
@ No bounds to |ext[K(X)]|

@ Modelling ignorance

o Uniform models indifference P

o Vacuous credal set

P(loss)

Ko(X)—{P(X) A }
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Geometric Representation of CSs (ternary variables)

P(draw)

@ Ternary X (e.g., @ = {win,draw,loss})
@ P(X) = point in the space (simplex)
@ No bounds to |ext[K(X)]|

@ Modelling ignorance

@ Uniform models indifference
o Vacuous credal set

@ Expert qualitative knowledge




Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Geometric Representation of CSs (ternary variables)

P(draw)

@ Ternary X (e.g., @ = {win,draw,loss})
@ P(X) = point in the space (simplex)
@ No bounds to |ext[K(X)]|

@ Modelling ignorance

P(win)

@ Uniform models indifference
o Vacuous credal set

@ Expert qualitative knowledge

o Comparative judgements: win is
more probable than draw,
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Geometric Representation of CSs (ternary variables)

P(draw)

@ Ternary X (e.g., @ = {win,draw,loss})
@ P(X) = point in the space (simplex)
@ No bounds to |ext[K(X)]|

@ Modelling ignorance

@ Uniform models indifference
o Vacuous credal set

@ Expert qualitative knowledge

o Comparative judgements: win is
more probable than draw,
which more probable than loss



Credal Sets

Geometric Representation of CSs (ternary variables)

@ Ternary X (e.g., @ = {win,draw,loss})
@ P(X) = point in the space (simplex)
@ No bounds to |ext[K(X)]|

@ Modelling ignorance

o Uniform models indifference
o Vacuous credal set
@ Expert qualitative knowledge

o Comparative judgements: win is
more probable than draw,
which more probable than loss

o Qualitative judgements:
adjective = IP statements

From natural language to
linear constraints on probabilities
(Walley, 1991)

extremely probable P(x) > 0.98
very high probability P(x) > 0.9
highly probable P(x) > 0.85
very probable P(x) > 0.75
has a very good chance P(x) > 0.65
quite probable P(x) > 0.6
probable P(x) > 0.5
has a good chance 0.4 < P(x) < 0.85
is improbable (unlikely) P(x) < 0.5
is somewhat unlikely P(x) < 0.4
is very unlikely P(x) < 0.25
has little chance P(x) < 0.2
is highly improbable P(x) < 0.15
is has very low probability P(x) < 0.1
is extremely unlikely P(x) < 0.02
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Marginalization (and credal sets in 4D)

@ Two Boolean variables:
Smoker, Lung Cancer

@ 8 “Bayesian” physicians,
each assessing P;(S, C)
K(S.C) = CH{P(S,C)}"

Credal Sets



Marginalization (and credal sets in 4D)

@ Two Boolean variables:
Smoker, Lung Cancer

@ 8 “Bayesian” physicians,
each assessing P;(S, C)
K(S,C) = CH{Py(S, )},

’/ ‘@@m Pi(s,3)  P(S,0) @@a‘

1 1/8 1/8 3/8 3/8
2 1/8 1/8 9/16 3/16
3 3/16 1/16 3/8 3/8
4 3/16 1/16 9/16 3/16
5 1/4 1/4 1/4 1/4
6 1/4 1/4 3/8 1/8
7 3/8 1/8 1/4 1/4
8 3/8 1/8 3/8 1/8

Credal Sets



Introducing IPs

@ Two Boolean variables:

Precise Probabilities

Smoker, Lung Cancer

@ 8 “Bayesian” physicians,
each assessing P;(S, C)
K(S,C) = CH{P(S. O)},

L

5. 9) ‘

Pi(s;0)  Pls.,0)  Ps0) P
1 1/8 1/8 3/8 3/8
2 1/8 1/8 9/16 3/16
3 3/16 1/16 3/8 3/8
4 3/16 1/16 9/16 3/16
5 1/4 1/4 1/4 1/4
6 1/4 1/4 3/8 1/8
7 3/8 1/8 1/4 1/4
8 3/8 1/8 3/8 1/8

Imprecise Probabilities Credal Sets

Marginalization (and credal sets in 4D)
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ities

Credal Sets

Marginalization (and credal sets in 4D)

@ Two Boolean variables:
Smoker, Lung Cancer

@ 8 “Bayesian” physicians,
each assessing P;(S, C)

8 (0,0,1,0)
K(S,C) = CH{Py(S, C)}_,
11
‘ j ‘ Pi(s,c)  Pi(s,o)  Pi(s,0)  Pi(5,0) ‘ I’:
1 1
1 1/8 1/8 3/8 3/8 I’ :
2 1/8 1/8 9/16 3/16 :I :
! 1
3 3/16 1/16 3/8 3/8 :I 1
1
! 1
4 3/16 1/16 9/16 3/16
/ / II /)_(
5 1/4 1/4 1/4 1/4 II //
;7
6 1/4 1/4 3/8 1/8 i
(1,0,0,0) ¥~
7 3/8 1/8 1/4 1/4
8 3/8 1/8 3/8 1/8

A

6,0:0,4)

Marginals elementwise (on extremes)

8

=1

N

K(C) = CH{Z P/(QS)} SRS

> (0,1,00)
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Credal sets induced by probability intervals

@ Assessing lower and upper probabilities: [Iy, uy], for each x € Q
@ The consistent credal set is

P(x)>0

K(X) = {P(X)
Zx P(X) =1

e < P(x) < uy }



Credal Sets

Credal sets induced by probability intervals

@ Assessing lower and upper probabilities: [/, ux], for each x € Q
@ The consistent credal set is

P(x) >0

K(X) = {P(X)
> P(x) =1

&sﬂnéw}

@ Avoiding sure loss implies non-emptiness of the credal set

S h<1<>
X X



Credal Sets

Credal sets induced by probability intervals

@ Assessing lower and upper probabilities: [/, ux], for each x € Q
@ The consistent credal set is

P(x) >0

K(X) = {P(X)
> P(x) =1

e < P(x) < uy }

@ Avoiding sure loss implies non-emptiness of the credal set

S h<1<>
X X

@ Coherence implies the reachability (bounds are tight)

U+ > h<t b+ Y U=

X'#X X'#X
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Introducing IPs

Precise Probabilities Imprecise Probabilities

Refining assessments (when possible)

P(=x)

4

N

Credal Sets
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Refining assessments (when possible)

P(=x)
ly=P(x)=6 uy=P(x)=.9
1= lx=P(-x)=.5 ux=P(-x)=.7
Iy + I-x > 1 not avoiding sure loss!
5 —
0 i i P(x)
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Refining assessments (when possible)
P(=x)
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lk=P(x)=6 uy=P(x)=.9
Lx=P(-x)=.5 u_x=P(-x)=.7

Iy + I-x > 1 not avoiding sure loss!

P(x)
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Refining assessments (when possible)
P(=x)

A

lk=P(x)=6 uy=P(x)=.9
1 4 l—\X = E(—|X) = 5 u—|X = ,‘_3(—|X) — 7

Iy + I-x > 1 not avoiding sure loss!

P(x)
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Refining assessments (when possible)
P(=x)

A

lk=P(x)=6 uy=P(x)=.9
Lx=P(-x)=.5 u_x=P(-x)=.7

Iy + I-x > 1 not avoiding sure loss!

The credal set is empty!

P(x)
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Introducing IPs

Refining assessments (when possible)

P(=x)

Precise Probabilities Imprecise Probabilities

/X + /—\X = .7 S 1
U+ Ux=15>1
avoid sure loss

K(X) # 0

Credal Sets
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Refining assessments (when possible)

P(=x)

lh=P(x)=2 uy=P(x)=.8
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Uy +U-x=15>1
avoid sure loss

K(X) £ 0

P(x)
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Refining assessments (when possible)
P(=x)

A

lh=P(x)=2 uy=P(x)=.8
Lx=P(-x)=.5 uy=P(-x)=.7

lX + I—|X = .7 S 1
Uy +U-x=15>1
avoid sure loss

K(X) £ 0

P(x)
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Precise Probabilities Imprecise Probabilities

Refining assessments (when possible)
P(=x)

A

lh=P(x)=2 uy=P(x)=.8
Lx=P(-x)=.5 uy=P(-x)=.7

lX + I—|X = .7 S 1
Uy +U-x=15>1
avoid sure loss

K(X) £ 0

P(x)

Credal Sets
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Precise Probabilities Imprecise Probabilities

Refining assessments (when possible)
P(=x)

lh=P(x)=2 uy=P(x)=.8
Lx=P(-x)=.5 uy=P(-x)=.7

checking coherence
Iy +u-x =.9<1o0k
I.x + uy =13 >1 no!

P(x)

Credal Sets
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Refining assessments (when possible)
P(=x)

lh=P(x)=2 uy=P(x)=.8
Lx=P(-x)=.5 uy=P(-x)=.7
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Iy +u-x =.9<1o0k
I.x + uy =13 >1 no!

make it coherent
ux=8—-u,=.5
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P(x)
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Precise Probabilities Imprecise Probabilities

Refining assessments (when possible)
P(~x)

lh=P(x)=2 uy=P(x)=.8
lx=P(-x)=.5 u.x=P(-x)=.7

checking coherence
Iy +u-x =.9<1o0k
I.x + uy =13 >1 no!

make it coherent
ux=8—-u,=.5
k=2-=1=.3

P(x)

Credal Sets



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Probability intervals are not fully general

ool [ [E][F][3][2][R])




Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Probability intervals are not fully general
ool [ [E][F][3][2][R])

Iy := minpx)ek(x) P(X)
Uy := MiNp(x)ek(x) P(X)

these intervals avoid sure
loss and are coherent



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Probability intervals are not fully general
ool [ [E][F][3][2][R])

Iy := minpx)ek(x) P(X)
Uy := MiNp(x)ek(x) P(X)

these intervals avoid sure
loss and are coherent

[le,uy] = [.05,.90]
[, uyr] = [.05,.80]
[/X’”-, UX///] = [05 60]



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Probability intervals are not fully general
{( ol l el ].l%].]%].] }

‘n:s“.m m“m“m“.m

Iy = minp()()"K(X)p(X)
Ux 1= MiNp(x)ek(x) P(X)

these intervals avoid sure
loss and are coherent

[lo,uy] = [.05,.90]
[l ugr] = [.05,.80]
[l U] = [.05, .60]



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Probability intervals are not fully general
{( ol l el ].l%].]%].] }

‘n:s“.m m“m“m“.m

Iy = minp()()"K(X)p(X)
Ux 1= MiNp(x)ek(x) P(X)

these intervals avoid sure
loss and are coherent

[lo,uy] = [.05,.90]
[l ugr] = [.05,.80]
[l U] = [.05, .60]
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Probability intervals are not fully general
{( w e[ & ][] W‘ [ % }

s || s || 0 || 0 ||

Iy = min,s(X)«—K(X) p(x)
Uy := MiNp(x)ek(x) P(X)

these intervals avoid sure
loss and are coherent

[, Uy [.05,.90]
[, uyr] = [.05,.80]
[lrrr, Uyrnr] = [.05,.60]
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Probability intervals are not fully general
FERIEIRE I SR IRE IRE 3

Iy := minpx)ek(x) P(X)
Uy := MiNp(x)ek(x) P(X)

these intervals avoid sure
loss and are coherent

[hy uy] = [.05,.90]
[hers U] = [.05,.80]
[/X///.' UX///] = [05 60]

P(x)

.05 .05 15 35 .90
K(X)CH{|: .35}{ .80]{.80}{05},[.05”
60 15 .05 .60 .05
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Learning credal sets from (few) data

@ Learning from data about X

n(win) 4
n(draw) = 1
n(loss) 3

1957: Spain vs. ltaly 5 — 1
1973: ltaly vs. Spain 3 — 2
1980: Spain vs. ltaly 1 — 0
1983: Spain vs. ltaly 1 — 0
1983: ltaly vs. Spain 2 — 1
1987: Spain vs. ltaly 1 — 1
2000: Spain vs. ltaly 1 —2
2001: ltaly vs. Spain 1 —0
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Imprecise Probabilities

Learning credal sets from (few) data

@ Learning from data about X

@ Max lik estimate P(x) = %

P(draw)

© Spain vs. ltaly
: Italy vs. Spain
: Spain vs. ltaly
: Spain vs. ltaly
: ltaly vs. Spain
: Spain vs. ltaly
: Spain vs. ltaly
: ltaly vs. Spain

5—1
3-—-2
1—-0
1—-0
2 -1
1-1
1-2
1—-0

n(loss)

Credal Sets
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Imprecise Probabilities

Learning credal sets from (few) data

@ Learning from data about X
@ Max lik estimate P(x) = %
o Bayesian (ESS s = 2) 2()rsl)

P(draw)

© Spain vs. ltaly
: Italy vs. Spain
: Spain vs. ltaly
: Spain vs. ltaly
: ltaly vs. Spain
: Spain vs. ltaly
: Spain vs. ltaly
: ltaly vs. Spain

5—1
3-—-2
1—-0
1—-0
2 -1
1-1
1-2
1—-0

n(win)
n(draw)
n(loss)

Credal Sets
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Learning credal sets from (few) data

P(draw)

@ Learning from data about X
@ Max lik estimate P(x) = %

; +st
@ Bayesian (ESS s = 2) M

@ Imprecise: set of priors (vacuous t)

n(win) 4
n(draw) = 1
3

n(loss) -

1957: Spain vs. ltaly 5 — 1
1973: ltaly vs. Spain 3 — 2
1980: Spain vs. ltaly 1 — 0
1983: Spain vs. ltaly 1 — 0
1983: ltaly vs. Spain 2 — 1
1987: Spain vs. ltaly 1 — 1
2000: Spain vs. ltaly 1 —2
2001: ltaly vs. Spain 1 — 0
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Learning credal sets from (few) data

P(draw)

@ Learning from data about X
@ Max lik estimate P(x) = %

; +st
@ Bayesian (ESS s = 2) M

@ Imprecise: set of priors (vacuous t)

imprecise Dirichlet model

n(win) 4
(Walley & Bernard) n(draw) = [ 13 ]

n(loss) -

1957: Spain vs. ltaly 5 — 1
1973: ltaly vs. Spain 3 — 2
1980: Spain vs. ltaly 1 — 0
1983: Spain vs. ltaly 1 — 0
1983: ltaly vs. Spain 2 — 1
1987: Spain vs. ltaly 1 — 1
2000: Spain vs. ltaly 1 —2
2001: ltaly vs. Spain 1 — 0
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Learning credal sets from (few) data

P(draw)

@ Learning from data about X
@ Max lik estimate P(x) = %

- +-st(x)
o Bayesian (ESS s = 2) 2()rsl)

@ Imprecise: set of priors (vacuous t)

imprecise Dirichlet model

n(win) 4
(Walley & Bernard) n(draw) = [ 13 ]

n(loss)

@ They a.s.l. and are coherent 1857: Spain vs. Haly 5 — 1

1973: ltaly vs. Spain 3 — 2
1980: Spain vs. ltaly 1 — 0
1983: Spain vs. ltaly 1 — 0
1983: ltaly vs. Spain 2 — 1
1987: Spain vs. ltaly 1 — 1
2000: Spain vs. ltaly 1 —2
2001: ltaly vs. Spain 1 — 0
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Learning credal sets from (few) data

P(draw)

@ Learning from data about X
@ Max lik estimate P(x) = %
- +-st(x)
o Bayesian (ESS s = 2) 2()rsl)
°

Imprecise: set of priors (vacuous t)

imprecise Dirichlet model

n(win) 4
(Walley & Bernard) n(draw) = [ 13 ]

n(loss)
@ They a.s.l. and are coherent 1957 Spain v, Italy 5 — 1
L. ) ) 1973: ltaly vs. Spain 3 — 2
@ Non-negligible size of intervals 1980: Spain vs. ltaly 1— 0
1983: Spain vs. ltaly 1 — 0
only for small N 1983: ltaly vs. Spain 2 — 1
. 1987: Spain vs. ltaly 1 — 1
(Bayesian for N — o) 2000: Spain vs. ltaly 1 — 2

2001: ltaly vs. Spain 1 —0
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Learning credal sets from (missing) data

@ Coping with missing data?

1957: Spain vs. ltaly 5 — 1
1973: ltaly vs. Spain 3 — 2
1980: Spain vs. ltaly 1 — 0
1983: Spain vs. Italy 1 — 0
1983: ltaly vs. Spain 2 — 1
1987: Spain vs. ltaly 1 — 1
2000: Spain vs. Italy 1 — 2
2001: Italy vs. Spain 1 —0
2003: Spain vs. ltaly = — =
2011: ltaly vs. Spain * — =



Introducing IPs Precise Probabilities

Learning credal sets from (missing) data

@ Coping with missing data?

@ Missing at random (MAR)
P(O = %|X = x) indep of X
Ignore missing data

Imprecise Probabilities

1957:
1973:
1980:
1983:
1983:
1987:
2000:
2001:
2003:
2011:

P(draw)

P(loss)

Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Italy vs. Spain

5—1
3-—-2
1-0
1—-0
2 -1
1-1
1-2
1—-0
* — x
* — x

Credal Sets




Introducing IPs Precise Probabilities

Learning credal sets from (missing) data

Coping with missing data?
Missing at random (MAR)
P(O = %|X = x) indep of X
Ignore missing data

Not always the case!

Imprecise Probabilities

1957:
1973:
1980:
1983:
1983:
1987:
2000:
2001:
2003:
2011:

P(draw)

P(loss)

Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Italy vs. Spain

5—1
3-—-2
1-0
1—-0
2 -1
1-1
1-2
1—-0
* — x
* — x

Credal Sets




Introducing IPs Precise Probabilities

Learning credal sets from (missing) data

@ Coping with missing data?

@ Missing at random (MAR)
P(O = %|X = x) indep of X
Ignore missing data

@ Not always the case!

o Conservative updating
(Gert & Zaffalon) ignorance about
the process P(O|X) as a
vacuous model

Imprecise Probabilities

1957:
1973:
1980:
1983:
1983:
1987:
2000:
2001:
2003:
2011:

P(draw)

P(loss)

Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Italy vs. Spain

5—1
3-—-2
1-0
1—-0
2 -1
1—-1
1-2
1—-0
* —
* — x

Credal Sets




Introducing IPs Precise Probabilities

Imprecise Probabilities

Learning credal sets from (missing) data

@ Coping with missing data?

@ Missing at random (MAR)
P(O = %|X = x) indep of X
Ignore missing data

@ Not always the case!

o Conservative updating
(Gert & Zaffalon) ignorance about
the process P(O|X) as a
vacuous model

@ Consider all the explanations
(and take the convex hull)

1957:
1973:
1980:
1983:
1983:
1987:
2000:
2001:
2003:
2011:

P(draw)

P(loss)

Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Spain vs. ltaly
Italy vs. Spain
Spain vs. ltaly
Italy vs. Spain

5—1
3-—-2
1-0
1—-0
2 -1
1—-1
1-2
1—-0
* —
* — x

N

Credal Sets
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