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Outline and scheduling

An informal introduction to IPs

Reasoning with (imprecise) fault trees

From determinism to imprecision (through uncertainty)

What probability is? (aka does probability exists?)

Subjective vs. Objective

Behavioural interpretation of subjective probability

Prices, probabilities, previsions

What imprecise probability is?

Reasons for imprecise probabilities

Avoiding sure loss, coherence and natural extension

Credal sets
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Reasoning: from Determinism to IPs
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Three different levels of knowledge

FIFA’12 final match between Italy and Spain
Result of Spain after the regular time? Win, draw or loss?

DETERMINISM

The Spanish goalkeeper
is unbeatable and Italy
always receives a goal

Spain (certainly) wins

P(Win)
P(Draw)
P(Loss)

=

 1
0
0



UNCERTAINTY

Win is two times more
probable than draw, and

this being three times
more probable than loss

P(Win)
P(Draw)
P(Loss)

=

 .6
.3
.1



IMPRECISION

Win is more probable
than draw, and this is

more probable than loss

P(Win) > P(Draw)
P(Draw) > P(Loss)

P(Win)
P(Draw)
P(Loss)

=

[ α
3 + β + γ

2
α
3 + γ

2
α
3

]
∀α, β, γ such that
α > 0, β > 0, γ > 0,
α+ β + γ = 1
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Three different levels of knowledge

DETERMINISM UNCERTAINTY IMPRECISION

INFORMATIVENESS

EXPRESSIVENESS

limit of infinite amount
of available information

(e.g., very large data sets)

Propositional
(Boolean) Logic

Bayesian prob-
ability theory

Walley’s theory
of coherent

lower previsions

Natural Embedding (de Cooman)

small/incomplete data

expert’s (qualitative) knowledge

unreliable/incomplete observations
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[. . . ] Bayesian inference will always be
a basic tool for practical everyday statistics ,

if only because questions must be answered
and decisions must be taken, so that a
statistician must always stand ready to upgrade
his vaguer forms of belief into precisely additive
probabilities

Art Dempster (in his foreword to Shafer’s book)
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Probability: one word for two (not exclusive) things

Randomness
Variability captured through
repeated observations

De Moivre and Kolmogorov

Chances
Feature of the world
Aleatory or objective
Frequentist theory
Limiting frequencies

Partial knowledge
Incomplete information about
issues of interest

Bayes and De Finetti

Beliefs
Feature of the observer
Epistemic or subjective
Bayesian theory
Behaviour (bets dispositions)
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Objective probability

X taking its values in (finite set) Ω

Value X = x ∈ Ω as the output of an
experiment which can be iterated

Prob P(x) as limiting frequency

P(x) := lim
N→+∞

#(X = x)

N

Kolmogorov’s axioms follow from this

Probability as a property of the world

Not only (statistical and quantum)
mechanics, hazard games (coins,
dices, cards), but also economics,
bio/psycho/sociology, linguistics, etc.

But not all events can be iterated . . .

1 ∀A ∈ 2Ω, 0 ≤ P(A) ≤ 1

2 P(Ω) = 1

3 ∀A,B ∈ 2Ω : A ∧ B = ∅
P(A ∨ B) = P(A) + P(B)
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Probability in everyday life

Probabilities often pertains to singular events

not necessarily related to statistics
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Subjective probability

Probability p of me having a kid

Singular event: frequency unavailable

Subjective probability

models (partial) knowledge of a subject

feature of the subject not of the world

two subjects can assess different probs

Quantitative measure of knowledge?

Behavioural approach

Subjective betting dispositions

A (linear) utility function is needed

Money?

Big money not linear!

Small, somehow yes

lottery tickets
∝

winning chance
∝

benefit

infinite number of tickets
makes utility real-valued
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(Rationally) betting on gambles

Probabilities as dispositions to buy/sell gambles

Gambles (Anglo-Saxon world) are checks whose

amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child

zero otherwise

The bookie sells this gamble

Probability p as a price for the gamble
maximum price

100EUR for which you buy the gamble
minimum price

100EUR for which you (bookie) sell it

Interpretation + rationality produce axioms

0 EUR

100 EUR

95 EUR
Almost sure of

me having a kid

8 EUR

Very doubtful about
me having a kid

120 EUR
Gambler’s sure loss

-12 EUR
Bookie’s sure loss

95 EUR

55 EUR
Price for gamble about
me not having a kid

You spend 150
EUR to (certainly)

win 100 EUR!
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amount is uncertain/unknown

This check has a value of
100 EUR if Alessandro has a child

zero otherwise

The bookie sells this gamble

Probability p as a price for the gamble
maximum price

100EUR for which you buy the gamble
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100EUR for which you (bookie) sell it

Interpretation + rationality produce axioms
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Coherence and linear previsions

Don’t be crazy: choose prices s.t.
there is always has a chance to win

(whatever the stakes set by the bookie)

Prices {PAi}N
i=1 for events Ai ⊆ Ω, i = 1, . . . ,N are coherent iff

max
x∈Ω

N∑
i=1

ci [IAi (x)− PAi ] ≥ 0

Moreover, assessments {PAi}N
i=1 are coherent iff

Exists probability mass function P(X ): P(Ai ) = PAi

Or, for general gambles, linear functional P(fi ) := Pfi

P(f ) =
∑

x∈Ω P(x) ·f (x)
linear prevision probability mass function

to be extended to a
coherent lower prevision

to be extended
to a credal set
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Subjective P, if objective P exists?

Chances known⇒ beliefs coincide

Swiss lotto (45 nums): X6 next lotto’s 6-tuple

x ′
6 and x ′′

6 your two guesses (6 + 6 nums)

P((X6 = x ′
6) ∨ (X6 = x ′′

6 )) ' 1/4,000,000

You spend 1
4,000,000 to have 1 CHF if you win

You spend s
4,000,000 to have s CHF if you win

But s
4,000,000 = 3 CHFs⇒ s = 12, 000, 000

Worth play if jackpot ≥ 12’000’000 CHFs
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Post Scriptum

My personal
P(X = true)

is one

which means
I have a kid

(and I know that)



Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

BREAK
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(subjective, behavioural) imprecise probabilities

De Finetti’s precision
dogma

minimum
selling
price

P(x)

maximum
buying
price

P(x)

≡

Walley’s proposal for
imprecision

No strong reasons for that
rationality only requires

P(x) ≤ P(x)

Avoid sure loss! With max buying prices P(A) and P(Ac),
you can buy both gambles and earn one for sure:

P(A) + P(Ac) ≤ 1

Be coherent! When buying both A and B, you pay P(A) + P(B)
and you have a gamble which gives one if A ∪ B occurs:

P(A ∪ B) ≥ P(A) + P(B)

coherence self-consistency (beliefs revised if unsatisfied)
less problematic than a.s.l.
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Reasons for imprecise probabilities

Reflect the amount of information on which probs are based

Uniform probs model indifference not ignorance

When doing introspection, sometimes indecision/indeterminacy

Easier to assess (e.g., qualitative knowledge, combining beliefs)

Assessing precise probs could be possible in principle, but not in

practice because of our bounded rationality

Natural extension of precise models defined on some events

determine only imprecise probabilities for events outside

Robustness in statistics (multiple priors/likelihoods) and

decision problems (multiple prob distributions/utilities)
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Credal sets (Levi, 1980) as IP models

Without the precision dogma, incomplete knowledge described

by (credal) sets of probability mass functions

Induced by a finite number of assessments (l/u gambles prices)

which are linear constraints on the consistent probabilities

Sets of consistent (precise) probability mass functions

convex with a finite number of extremes (if |Ω| < +∞)

E.g., no constraints⇒ vacuous credal set (model of ignorance)

K (X ) =

P(X )

∣∣∣∣∣∣
∑

x∈Ω P(x) = 1

P(x) ≥ 0
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Natural extension
Price assessments are linear constraints on probabilities
(e.g., P(f ) = .21 means

∑
x P(x)f (x) ≥ .21)

Compute the extremes {Pj (X )}v
j=1 of the feasible region

The credal set K (X ) is ConvHull{Pj (X )}v
j=1

Lower prices/expectations of any gamble/function of/on X

P(h) = min
P(X)∈K (X)

∑
x∈X

P(x) · h(x)

LP task: optimum on the extremes of K (X )

Computing expectations on credal sets

Constrained optimization problem, or

Combinatorial optimization on the extremes space

(# of extremes can be exponential in # of constraints)
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Lower-upper conjugacy
E.g., with events

P(A) = min
P(X)∈K (X)

∑
x∈A

P(x)

P(Ac) = max
P(X)∈K (X)

∑
x /∈A

P(x) = max
P(X)∈K (X)

[
1−

∑
x∈A

P(x)

]
= 1− P(A)

For gambles, similarly,
P(−f ) = −P(f )

P(f ) = min
P(X)∈K (X)

∑
x

P(x)f (x)

P(−f ) = max
P(X)∈K (X)

∑
x

[−P(x)f (x)] = − min
P(X)∈K (X)

∑
x

P(x)f (x)
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Credal Sets over Boolean Variables

Boolean X , values in X = {x ,¬x}
Determinism ≡ degenerate mass f
E.g., X = x ⇐⇒ P(X) =

[
1
0

]
Uncertainty ≡ prob mass function
P(X) =

[
p

1− p

]
with p ∈ [0, 1]

Imprecision credal set
on the probability simplex

K (X) ≡
{

P(X) =

[
p

1− p

] ∣∣∣.4 ≤ p ≤ .7
}

A CS over a Boolean variable cannot
have more than two vertices!

ext[K (X)] =

{[
.7
.3

]
,

[
.4
.6

]}

P(x)

P(¬x)

P(X ) =

[
1
0

]P(X ) =

[
.7
.3

]P(X ) =

[
.4
.6

]

.4 .7

.6

.3
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Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Geometric Representation of CSs (ternary variables)

Ternary X (e.g., Ω = {win,draw,loss})

P(X ) ≡ point in the space (simplex)

No bounds to |ext[K (X )]|

Modelling ignorance

Uniform models indifference

Vacuous credal set

Expert qualitative knowledge

Comparative judgements: win is

more probable than draw,

which more probable than loss

Qualitative judgements:

adjective ≡ IP statements

P(win)

P(draw)

P(loss)

P(X) =

 .6
.3
.1



P(X)K (X)

P0(x) = 1
|ΩX |

P0(X)K0(X)

K0(X)=

{
P(X)

∣∣∣∣∣
∑

x P(x) = 1,
P(x) ≥ 0

}

(Walley, 1991)

From natural language to
linear constraints on probabilities

extremely probable P(x) ≥ 0.98
very high probability P(x) ≥ 0.9

highly probable P(x) ≥ 0.85
very probable P(x) ≥ 0.75

has a very good chance P(x) ≥ 0.65
quite probable P(x) ≥ 0.6

probable P(x) ≥ 0.5
has a good chance 0.4 ≤ P(x) ≤ 0.85

is improbable (unlikely) P(x) ≤ 0.5
is somewhat unlikely P(x) ≤ 0.4

is very unlikely P(x) ≤ 0.25
has little chance P(x) ≤ 0.2

is highly improbable P(x) ≤ 0.15
is has very low probability P(x) ≤ 0.1

is extremely unlikely P(x) ≤ 0.02
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Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Marginalization (and credal sets in 4D)

Two Boolean variables:
Smoker, Lung Cancer

8 “Bayesian” physicians,
each assessing Pj (S,C)

K (S,C) = CH {Pj (S,C)}8
j=1

j Pj (s, c) Pj (s, c) Pj (s, c) Pj (s, c)

1 1/8 1/8 3/8 3/8

2 1/8 1/8 9/16 3/16

3 3/16 1/16 3/8 3/8

4 3/16 1/16 9/16 3/16

5 1/4 1/4 1/4 1/4

6 1/4 1/4 3/8 1/8

7 3/8 1/8 1/4 1/4

8 3/8 1/8 3/8 1/8

Marginals elementwise (on extremes)

K (C) = CH

{∑
s

Pj (C, s)

}8

j=1

1
2
≤ P(c) ≤

3
4

(0,1,0,0)

(0,0,1,0)

(1,0,0,0)

(0,0,0,1)
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Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Credal sets induced by probability intervals

Assessing lower and upper probabilities: [lx ,ux ], for each x ∈ Ω

The consistent credal set is

K (X ) :=

P(X )

∣∣∣∣∣∣
lx ≤ P(x) ≤ ux
P(x) ≥ 0∑

x P(x) = 1


Avoiding sure loss implies non-emptiness of the credal set∑

x

lx ≤ 1 ≤
∑

x

ux

Coherence implies the reachability (bounds are tight)

ux +
∑
x′ 6=x

lx ≤ 1 lx +
∑
x′ 6=x

ux ≥ 1
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Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Refining assessments (when possible)

P(x)

P(¬x)

0 .5 1

0

.5

1

lx = P(x) = .6 ux = P(x) = .9
l¬x = P(¬x) = .5 u¬x = P(¬x) = .7

lx + l¬x ≥ 1 not avoiding sure loss!

The credal set is empty!

lx = P(x) = .2 ux = P(x) = .8
l¬x = P(¬x) = .5 u¬x = P(¬x) = .7

lx + l¬x = .7 ≤ 1
ux + u¬x = 1.5 ≥ 1

avoid sure loss
K (X ) 6= ∅

checking coherence
lx + u¬x = .9 ≤ 1 ok
l¬x + ux = 1.3 ≥ 1 no!

make it coherent
ux = .8→ u′

x = .5
lx = .2→ l ′x = .3
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avoid sure loss
K (X ) 6= ∅

checking coherence
lx + u¬x = .9 ≤ 1 ok
l¬x + ux = 1.3 ≥ 1 no!

make it coherent
ux = .8→ u′

x = .5
lx = .2→ l ′x = .3
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Probability intervals are not fully general
K (X) = CH


 .90
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 .10
.40
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 ,

 .05
.80
.15

 ,

 .20
.70
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lx := minP(X)∈K (X) p(x)

ux := minP(X)∈K (X) p(x)

these intervals avoid sure
loss and are coherent

[lx′ , ux′ ] = [.05, .90]

[lx′′ , ux′′ ] = [.05, .80]

[lx′′′ , ux′′′ ] = [.05, .60]

K (X) = CH


 .05
.35
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 ,
 .35
.05
.60

 ,
 .90
.05
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P(x’)

P(x”)

P(x”’)
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Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Learning credal sets from (few) data

Learning from data about X

Max lik estimate P(x) = n(x)
N

Bayesian (ESS s = 2) n(x)+st(x)
N

Imprecise: set of priors (vacuous t)

n(x)

N + s
≤ P(x) ≤ n(x) + s

N + s

imprecise Dirichlet model
(Walley & Bernard)

They a.s.l. and are coherent

Non-negligible size of intervals
only for small N
(Bayesian for N →∞)

P(win)

P(draw)

P(loss)

1957: Spain vs. Italy 5 − 1
1973: Italy vs. Spain 3 − 2
1980: Spain vs. Italy 1 − 0
1983: Spain vs. Italy 1 − 0
1983: Italy vs. Spain 2 − 1
1987: Spain vs. Italy 1 − 1
2000: Spain vs. Italy 1 − 2
2001: Italy vs. Spain 1 − 0

n(win)

n(draw)

n(loss)

=

 4
1
3
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Introducing IPs Precise Probabilities Imprecise Probabilities Credal Sets

Learning credal sets from (missing) data

Coping with missing data?

Missing at random (MAR)
P(O = ∗|X = x) indep of X
Ignore missing data

Not always the case!

Conservative updating
(Gert & Zaffalon) ignorance about
the process P(O|X ) as a
vacuous model

Consider all the explanations
(and take the convex hull)

K (X)

P(win)

P(draw)

P(loss)

1957: Spain vs. Italy 5 − 1
1973: Italy vs. Spain 3 − 2
1980: Spain vs. Italy 1 − 0
1983: Spain vs. Italy 1 − 0
1983: Italy vs. Spain 2 − 1
1987: Spain vs. Italy 1 − 1
2000: Spain vs. Italy 1 − 2
2001: Italy vs. Spain 1 − 0
2003: Spain vs. Italy ∗ − ∗
2011: Italy vs. Spain ∗ − ∗
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