## Credal Networks

# Fabio G. Cozman - University of Sao Paulo, Brazil fgcozman@usp.br

July 17, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Outline

1. Motivation: why are graph-based "languages" useful?

- 2. Background: basics on Bayesian networks.
- 3. Credal networks: basic definitions.
- 4. Credal networks: basic theory .
- 5. Credal networks: basic applications.

Basic fact: everything is basic...

## Motivation

- Graphs offer a compact and expressive language to express scenarios...
  - ... with many independent modules, with interacting/hierachical pieces that display dependence/independence.
  - ... with simplifying assumptions concerning dependence.

## Motivation

- Graphs offer a compact and expressive language to express scenarios...
  - ... with many independent modules, with interacting/hierachical pieces that display dependence/independence.
  - ... with simplifying assumptions concerning dependence.

It is possible to exploit the structure of the graph to obtain...

- ... insights about theoretical properties.
- ... gain in computational operations.

#### Motivation

- Graphs offer a compact and expressive language to express scenarios...
  - ... with many independent modules, with interacting/hierachical pieces that display dependence/independence.
  - ... with simplifying assumptions concerning dependence.

It is possible to exploit the structure of the graph to obtain...

- ... insights about theoretical properties.
- ... gain in computational operations.

So, graphs are great. Let' see what graphs are.

# Detour: directed acyclic graph



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

# Detour: graph-theoretic concepts

| A                  | parent of              | B and $C$ |
|--------------------|------------------------|-----------|
| B and C            | parents of             | Ε         |
| F                  | child of               | C and $D$ |
| E and F            | children of            | С         |
| E, F and G         | descendants of         | С         |
| A, B and D         | nondescendants of      | С         |
| B, C, E, F and $G$ | descendants of         | Α         |
| D                  | nondescendant of       | A         |
| B and D            | parents of children of | С         |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In the 60s, probabilities were not adopted in AI (McCarthy and Hayes: "information necessary to assign numerical probabilities is not ordinarily available")."

- In the 60s, probabilities were not adopted in AI (McCarthy and Hayes: "information necessary to assign numerical probabilities is not ordinarily available")."
- Many alternatives to probability were adopted: certainty factors, Dempster-Shafer, fuzzy, non-classical logics...

- In the 60s, probabilities were not adopted in AI (McCarthy and Hayes: "information necessary to assign numerical probabilities is not ordinarily available")."
- Many alternatives to probability were adopted: certainty factors, Dempster-Shafer, fuzzy, non-classical logics...
- During the 80s, probabilities received attention, and Bayesian networks appeared; Markov random fields were around and were adopted.

- In the 60s, probabilities were not adopted in AI (McCarthy and Hayes: "information necessary to assign numerical probabilities is not ordinarily available")."
- Many alternatives to probability were adopted: certainty factors, Dempster-Shafer, fuzzy, non-classical logics...
- During the 80s, probabilities received attention, and Bayesian networks appeared; Markov random fields were around and were adopted.

 Since then, probability has been adopted everywhere: knowledge representation, planning and problem solving, learning.

- In the 60s, probabilities were not adopted in AI (McCarthy and Hayes: "information necessary to assign numerical probabilities is not ordinarily available")."
- Many alternatives to probability were adopted: certainty factors, Dempster-Shafer, fuzzy, non-classical logics...
- During the 80s, probabilities received attention, and Bayesian networks appeared; Markov random fields were around and were adopted.
- Since then, probability has been adopted everywhere: knowledge representation, planning and problem solving, learning.
- (Since 80s, credal networks have been also investigated.)

# The Alarm network



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### The LV-failure network



◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

#### The HU network



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

## Heredogram analysis



◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

## Heredogram to Bayesian network



◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

## Representing DNA sequences

 A popular representation is based on Bayesian networks (actually, Hidden Markov Models):



(from www.cse.ucsc.edu/compbio/sam.html)

#### Protein interaction...



(Source: S. Carroll, V. Pavlovic, Protein classification using probabilistic chain graphs and the Gene Ontology structure. *Bioinformatics*, 22(15):1871–1878, 2006.)

## Classification: expression detection



◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

# Genie, Samlam



Others: BNT, and for more, bnt.sourceforge.net/bnsoft.html.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Hugin, Analytica



Others: Netica, BayesiaLab, and for more, bnt.sourceforge.net/bnsoft.html.



This and a lot more: www.mrc-bsu.cam.ac.uk/bugs/

# Application: Topic models

- Goal: to represent topics in text classification.
- Popular model: Latent Dirichlet analysis.



 $arphi_j \sim \mathsf{Dirichlet}(B), \quad heta_d \sim \mathsf{Dirichlet}(lpha),$  $z_i \sim \mathsf{Dirichlet}( heta_{eta_i}), \quad w_i | z_i = j \sim \mathsf{Dirichlet}(arphi_j).$ 

#### Back to basics

- A Bayesian network encodes a single joint probability density over X.
- > The joint density is specified through a directed acyclic graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Each node represents a random variable  $X_i$  in **X**.
  - Parents of  $X_i$ :  $pa(X_i)$ .

Example: The dog problem

By Charniak, 1991:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Semantics: The Markov condition

Every variable is independent of its nondescendants nonparents given its parents.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Exercise

Enumerate the independence relations implied by the Markov condition on these three networks.



#### Semantics: Basic result

Every variable is independent of its nondescendants nonparents given its parents.

#### Semantics: Basic result

Every variable is independent of its nondescendants nonparents given its parents.

#### Theorem

The Markov condition implies that any Bayesian network represents a unique joint probability density that factorizes as:

$$p(\mathbf{X}) = \prod_i p(X_i | \mathrm{pa}(X_i)).$$

#### Semantics: Basic result

Every variable is independent of its nondescendants nonparents given its parents.

#### Theorem

The Markov condition implies that any Bayesian network represents a unique joint probability density that factorizes as:

$$p(\mathbf{X}) = \prod_i p(X_i | \mathrm{pa}(X_i)).$$

Such a factorization reduces the number of needed probability values.

#### Exercise



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write down the factorization of the joint distribution for [A, B, C, D, E, F, G].

#### Exercise

- 1. Convince yourself that, given a directed acyclic graph, it is possible to order the variables in such a way that variable  $X_i$  is never preceded by one of its descendants.
- 2. Prove that for any Bayesian network,

$$p(\mathbf{X}) = \prod_i p(X_i|Y_i),$$

where  $Y_i$  is a set of variables that precede  $X_i$  in some ordering of variables that guarantees that  $X_i$  is never preceded by one of its descendants.

3. Now prove Theorem 1.

# d-separation

- Famous concept in Bayesian networks.
- Very complicated; sound, but not complete.
- Conceptually important: allows one to discard pieces of the network.

- Proved only using the graphoid properties.
- Fast in a computer (polynomial algorithms).

# d-separation

- Famous concept in Bayesian networks.
- Very complicated; sound, but not complete.
- Conceptually important: allows one to discard pieces of the network.
- Proved only using the graphoid properties.
- Fast in a computer (polynomial algorithms).

#### Definition

Given three sets of variables X, Y and Z, suppose that along every path between a variable in X and a variable in Y there is a variable W such that:

- either W is a collider and is not in Z and none of its descendants are in Z,
- 2. or W is not a collider and is in **Z**.

Then  $\mathbf{Y}$  and  $\mathbf{X}$  are *d*-separated by  $\mathbf{Z}$ .

## Perfect maps?

► A graph-based representation scheme where independence is equivalent to d-separation is a *perfect map*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
## Perfect maps?

 A graph-based representation scheme where independence is equivalent to d-separation is a *perfect map*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Bayesian networks are not perfect maps: There may be independences without d-separation.

## Perfect maps?

- A graph-based representation scheme where independence is equivalent to d-separation is a *perfect map*.
- Bayesian networks are not perfect maps: There may be independences without d-separation.
- Bayesian networks are *independence maps*: a d-separation implies an independence.

## Perfect maps?

- A graph-based representation scheme where independence is equivalent to d-separation is a *perfect map*.
- Bayesian networks are not perfect maps: There may be independences without d-separation.
- Bayesian networks are *independence maps*: a d-separation implies an independence.
- Moreover, all independences implied by d-separation are obtained by application of graphoid properties to the Markov condition!

An exercise on failure of representation...

From Pearl, p. 126.

- 1. Consider population of animals where disease is spreading through sexual contact.
- 2. Closed heterosexual group: two males *M*1, *M*2 and two females *F*1, *F*2.
- 3. M1 and M2 are independent given F1 and F2.
- 4. F1 and F2 are independent given M1 and M2.
- 5. A pair of male-female is not independent.
- 6. Show: no Bayesian network with only four nodes can represent this.

• We want:  $P(X_q | \mathbf{X}_E)$ .

<□ > < @ > < E > < E > E のQ @

• We want:  $P(X_q | \mathbf{X}_E)$ .

That is,

$$P(X_q | \mathbf{X}_E) = \frac{P(X_q, \mathbf{X}_E)}{P(\mathbf{X}_E)}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• We want:  $P(X_q | \mathbf{X}_E)$ .

That is,

$$P(X_q | \mathbf{X}_E) = \frac{P(X_q, \mathbf{X}_E)}{P(\mathbf{X}_E)}$$
$$= \frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} P(\mathbf{X})}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} P(\mathbf{X})}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• We want:  $P(X_q | \mathbf{X}_E)$ .

That is,

$$P(X_q | \mathbf{X}_E) = \frac{P(X_q, \mathbf{X}_E)}{P(\mathbf{X}_E)}$$
  
=  $\frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} P(\mathbf{X})}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} P(\mathbf{X})}$   
=  $\frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} \prod_i p(X_i | \text{pa}(X_i))}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} P(\prod_i p(X_i | \text{pa}(X_i)))}.$ 

(ロ)、(型)、(E)、(E)、 E) の(の)

• We want:  $P(X_q | \mathbf{X}_E)$ .

That is,

$$P(X_q | \mathbf{X}_E) = \frac{P(X_q, \mathbf{X}_E)}{P(\mathbf{X}_E)}$$
  
=  $\frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} P(\mathbf{X})}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} P(\mathbf{X})}$   
=  $\frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} \prod_i p(X_i | \text{pa}(X_i))}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} P(\prod_i p(X_i | \text{pa}(X_i)))}.$ 

Problem is #P-hard; some special cases are easy (polytrees: Pearl algorithm), and some algorithms work well in practice...

- There are very powerful algorithms to approximate this (MCMC, variational, loopy).
- There are other inferences... to be mentioned later.

# Exercise

#### Compute P(F|L).



$$p(f) = 0.5 \qquad p(b) = 0.5$$
  

$$p(l|f) = 0.6 \qquad p(l|f^c) = 0.05$$
  

$$p(d|f, b) = 0.8 \qquad p(d|f, b^c) = 0.1$$
  

$$p(d|f^c, b) = 0.1 \qquad p(d|f^c, b^c) = 0.7$$
  

$$p(h|d) = 0.6 \qquad p(h|d^c) = 0.3$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

# Learning

- Get training data, produce graph/probability values.
- Maximum likelihood: counting, and perhaps the EM algorithm.
- Bayesian: typically with conjugate priors and independence assumptions; often through MCMC or variational approximations.

## Building a Bayesian network

Elicitation from experts.

- Start identifying variables, and build the graph.
- Then elicit the numbers.

Learning from data.

- Elicit graph, learn numbers.
- Learn graph and numbers.

• ... or any combination of expert opinion and data.

## In short,

- 1. Bayesian networks are compact and intuitive.
- 2. They consist of graph and conditional distributions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

3. Basic assumption is Markov condition.

## In short,

- 1. Bayesian networks are compact and intuitive.
- 2. They consist of graph and conditional distributions.
- 3. Basic assumption is Markov condition.
- 4. The method is not "perfect" in a technical sense (not all independences can be represented).
  - Should we try other kinds of graphs? We could: Markov random fields, chain graphs, etc. None is "perfect"... Anyway, not discussed in this talk...

### Credal networks

Suppose we have a set of variables X.

- We wish to *compactly* specify a *set* of joint distributions over X, using graphs.
- Maybe we just wish to specify a set of Bayesian networks.
- Or, maybe we wish to specify a set of joint distributions using a single graph and associated credal sets.

• This is a credal network.

# Defining credal networks

Take a directed acyclic graph, with a variable associated with each node.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Defining credal networks

- Take a directed acyclic graph, with a variable associated with each node.
- Two possibilities:
  - 1. We assume that every node is associated with a "local" credal set/lower prevision conditional on its parents, and some rule that combines these local pieces.

• Maybe impose  $p(\mathbf{X}) = \prod_i p(X_i | pa(X_i))$ ?

2. We assume a Markov condition of some sort, and see what happens.

• Maybe derive  $p(\mathbf{X}) = \prod_i p(X_i | pa(X_i))$ ?

## Defining strong extension

- Suppose we have a directed acyclic graph, with a variable associated with each node.
- Suppose every node is strongly independent of its nondescendants nonparents given its parents.
- Take the largest set of joint distributions that satisfies this condition (the *strong* extension).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is this set?

### Strong extension

The strong extension is the convex hull of a set of joint distributions, all of which factorize as

$$p(\mathbf{X}) = \prod_i p(X_i | \operatorname{pa}(X_i)).$$

Example: The credal dog problem

$$\begin{array}{c|c} F & B \\ \hline \\ L & D \\ \hline \\ p(f) \in [0.5, 0.6] & p(b) \leq 0.5 \\ p(l|f) \in [0.5, 0.7] & p(l|f^c) = [0.1, 0.2 \\ p(d|f, b) = 0.8 & p(d|f, b^c) = 0.1 \\ p(d|f^c, b) = 0.1 & p(d|f^c, b^c) = 0.7 \\ p(h|d) \in [0.5, 0.8] & p(h|d^c) = 0.3 \end{array}$$

## Note: in the previous example,

 there are 2<sup>5</sup> possible ways to factorize the joint distribution... Number of vertices is the main challenge with strong extensions.

Il local credal sets are separately specified; we might instead have a constraint p(l|f) + p(l|f<sup>c</sup>) ≥ 0.5. Or maybe even a non-local constraint p(l|f) ≥ p(h|d)...

Separately specified strong extension

 The strong extension is the convex hull of a set of joint distributions, all of which factorize as

$$p(\mathbf{X}) = \prod_i p(X_i | \operatorname{pa}(X_i)).$$

Hence each variable can be associated with a "local" credal sets K(X<sub>i</sub>|pa(X<sub>i</sub>) = π<sub>ik</sub>), one for each valid π<sub>ik</sub>.

Separately specified strong extension

 The strong extension is the convex hull of a set of joint distributions, all of which factorize as

$$p(\mathbf{X}) = \prod_i p(X_i | \mathrm{pa}(X_i)).$$

- Hence each variable can be associated with a "local" credal sets K(X<sub>i</sub>|pa(X<sub>i</sub>) = π<sub>ik</sub>), one for each valid π<sub>ik</sub>.
- Vertices of the joint credal set are combinations of vertices of the "local" credal sets.
- Any lower/upper expectation is attained at a vertex of the joint credal set (thus at a combination of vertices of "local" credal sets.

#### Exercise

One can imagine a set of joint distributions that satisfies the "strong" Markov condition but that is smaller than the strong extension... just imagine imposing constraints amongst the local distribution!

Challenge: construct such a set of joint distributions for a network X → Y, where X and Y are binary variables.

# Specifying local conditional credal sets

- Qualitative constraints (back to Wellman, 1990).
- ▶ Probability intervals (back at least to Tessem, 1992).
- Order of magnitude comparisons.
- Belief functions.
- Possibilistic measures.
- General constraints (back a long way, van der Gaag, Moral,...), either on probabilities or on lower probabilities/expectations.

## Defining epistemic extension

- Suppose we have a directed acyclic graph, with a variable associated with each node.
- Suppose every node is epistemically independent of its nondescendants nonparents given its parents.
- Take the largest set of joint distributions that satisfies this condition (the *epistemic* extension).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is this set?

## An example of epistemic extension

Consider network



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

with four binary variables, and probability intervals assigned to all probability values. More than 6 million vertices in the epistemic extension!!!

For more on epistemic extension, see Gert' talk.

## Epistemic independence and d-separation

- Epistemic independence does not satisfy the contraction property.
- A credal network with epistemic independence may not satisfy d-separation.
- Example:
  - Binary variables W, X and Y.
  - K(W, X, Y) is convex hull of three distributions:

| W     | X     | Y     | $p_1(X, Y, W)$ | $p_2(X, Y, W)$ | $p_3(X, Y, W)$ |
|-------|-------|-------|----------------|----------------|----------------|
| $W_0$ | $X_0$ | $Y_0$ | 0.008          | 0.018          | 0.0093         |
| $W_1$ | $X_0$ | $Y_0$ | 0.072          | 0.072          | 0.0757         |
| $W_0$ | $X_1$ | $Y_0$ | 0.032          | 0.042          | 0.037          |
| $W_1$ | $X_1$ | $Y_0$ | 0.288          | 0.168          | 0.228          |
| $W_0$ | $X_0$ | $Y_1$ | 0.096          | 0.084          | 0.09           |
| $W_1$ | $X_0$ | $Y_1$ | 0.024          | 0.126          | 0.075          |
| $W_0$ | $X_1$ | $Y_1$ | 0.384          | 0.196          | 0.290          |
| $W_1$ | $X_1$ | $Y_1$ | 0.096          | 0.294          | 0.195          |

- ► X and Y are epistemically independent; X and W are conditionally epistemically independent given Y.
- But X and (W, Y) are not not epistemically independent.

## Epistemic independence and a conjecture

- Epistemic independence does not satisfy the contraction property.
- A credal network with epistemic independence may not satisfy d-separation.
  - Perhaps the way to go is to pursue different graph-based models (Moral, Vantaggi).
  - Perhaps the way to go is to assume just epistemic irrelevance.

• Conjecture: the epistemic extension does satisfy d-separation.

## Inference with strong extensions

- Strong extensions are quite similar to Bayesian networks (for instance, d-separation).
- Inference is:

 $\underline{P}(X_q|\mathbf{X}_E) = \min P(X_q|\mathbf{X}_E).$ 

## Inference with strong extensions

- Strong extensions are quite similar to Bayesian networks (for instance, d-separation).
- Inference is:

$$\underline{P}(X_q|\mathbf{X}_E) = \min P(X_q|\mathbf{X}_E).$$

Or, more explicitly,

$$\min \frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} \prod_i p(X_i | \mathrm{pa}(X_i))}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} \prod_i p(X_i | \mathrm{pa}(X_i))}.$$

where typically the min is over a large set of "local" credal sets.

## Inference with strong extensions

- Strong extensions are quite similar to Bayesian networks (for instance, d-separation).
- Inference is:

$$\underline{P}(X_q|\mathbf{X}_E) = \min P(X_q|\mathbf{X}_E).$$

Or, more explicitly,

$$\min \frac{\sum_{\mathbf{X} \setminus \{X_q, \mathbf{X}_E\}} \prod_i p(X_i | \mathrm{pa}(X_i))}{\sum_{\mathbf{X} \setminus \mathbf{X}_E} \prod_i p(X_i | \mathrm{pa}(X_i))}.$$

where typically the min is over a large set of "local" credal sets.

- This is a multilinear program.
- Solution lies at a set of vertices of credal sets.
- Best solutions resort to optimization theory to procedure inference engines.

Exercise

Compute  $\underline{P}(F|L)$ .



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

## Inference methods

 Enumeration methods (obsolete), multilinear programming (exact/approximate), simulated annealing, genetic algorithms... (approximate), variational (approximate).

- Special case where exact inference is simple: polytrees with binary variables.
  - Polytrees: if one discards arrow directions, one gets a tree.

Binary variables: credal sets are intervals.

# 2U and loopy 2U

- In the polytree+binary variable case, the 2U algorithm produces inferences in polynomial time.
- The 2U algorithm can be understood as a sequence of message exchanges between nodes in the polytree; the sequence surely ends.
- The loopy 2U algorithm is an approximate method for general graphs: messages are continuously exchanged, until probability intervals for all nodes are obtained (no guarantees, but good practical performance).

# Complexity

#### Bayesian Networks

| Problem         | Polytree                          | Bounded induced-width             | General                             |
|-----------------|-----------------------------------|-----------------------------------|-------------------------------------|
| Belief updating | Polynomial                        | Polynomial                        | PP-Complete                         |
| MPE             | Polynomial                        | Polynomial                        | NP-Complete                         |
| MAP             | NP-Complete                       | NP-Complete                       | NP <sup>PP</sup> -Complete          |
| MmAP            | $\Sigma_2^{\mathrm{P}}$ -Complete | $\Sigma_2^{\mathrm{P}}$ -Complete | $NP^{\operatorname{PP}}	ext{-}Hard$ |

#### Strong extensions

| Problem         | Polytree                          | Bounded induced-width             | General                               |
|-----------------|-----------------------------------|-----------------------------------|---------------------------------------|
| Belief updating | NP-Complete                       | NP-Complete                       | NP <sup>PP</sup> -Complete            |
| MPE             | Polynomial                        | Polynomial                        | NP-Complete                           |
| MAP             | $\Sigma_2^{\mathrm{P}}$ -Complete | $\Sigma_2^{\mathrm{P}}$ -Complete | $NP^{\operatorname{PP}}	extsf{-}Hard$ |

(Bounded induced-width: subjacent graph has induced-width bounded by O(log(s)), where s is the size of input.)
#### Learning

First scenario: missing data.

Absence of assumptions concerning missing data leads to set of estimates for probability values.

Example:

Consider network  $X \rightarrow Y$  and data:

| X | 0 | 1 | 0 | 1 | 1 |
|---|---|---|---|---|---|
| Y | 1 | 0 | 0 | 1 | ? |

Here, maximum likelihood estimate for P(Y = 1|X = 1) belongs to [1/3, 2/3].

#### Learning with imprecise priors

 Second scenario: imprecise priors. For instance, instead of Dirichlet distributions, the Imprecise Dirichlet model (IDM).

Here we have, with suitable independence assumptions over the priors:

$$\hat{P}(X_i = x_{ij} | ext{pa}(X_i) = \pi_{ik}) \in \left[rac{n_{ijk}}{s + n_{ik}}, rac{s + n_{ijk}}{s + n_{ik}}
ight],$$

where s is the parameter of the IDM.

# Application I

Expert system for assessment of debris in Switzerland (IDSIA).



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Application II

Semi-qualitative prior for facial expression recognition (IDSIA).



# Application III

Credal classifiers: dealing with missing values, few data points, and imprecise priors in classification (IDSIA).



JNCC2: www.idsia.ch/~giorgio/jncc2.html

#### Application III

Credal classifiers: dealing with missing values, few data points, and imprecise priors in classification (IDSIA).

| Data set           | NBC      |          | NCC2-MAR NCC2-nonMAR |             |               |          |                 |             | Subsets of instances |                |                |                   |                   | Data set         | NBC                | NCC2-MAR |          |                 |             | NCC2-nonMAR   |          |                 |             |               | Subsets of instances |                |                   |                   |                  |
|--------------------|----------|----------|----------------------|-------------|---------------|----------|-----------------|-------------|----------------------|----------------|----------------|-------------------|-------------------|------------------|--------------------|----------|----------|-----------------|-------------|---------------|----------|-----------------|-------------|---------------|----------------------|----------------|-------------------|-------------------|------------------|
|                    | Acc. (%) | Det. (%) | Single-Acc. (%)      | SetAcc. (%) | Indet.OutSize | Det. (%) | Single-Acc. (%) | SetAcc. (%) | Indet.OutSize        | NCC2-MAR D (%) | NCC2-MAR I (%) | NCC2-nonMAR D (%) | NCC2-nonMAR I (%) | ANCC2-nonMAR (%) |                    | Acc. (%) | Det. (%) | Single-Acc. (%) | SetAcc. (%) | Indet.OutSize | Det. (%) | Single-Acc. (%) | SetAcc. (%) | Indet.OutSize | NCC2-MAR D (%)       | NCC2-MAR I (%) | NCC2-nonMAR D (%) | NCC2-nonMAR I (%) | ANCC2-nonMAR (%) |
| ecoli (8 cl.)      | 85.0     | 84.2     | 88.5                 | 92.2        | 3.8           | 54.4     | 95.0            | 96.6        | 5.2                  | 88.5           | 66.6 (6.4)     | 95.D              | 72.9 (3.4)        | 74.7 (4.3)       | ecoli (8cl.)       | 85.2     | 83.2     | 88.9            | 92.6        | 3.7           | 69.6     | 94.9            | 94.1        | 3.8           | 88.9                 | 67.2 (5.7)     | 949               | 62.9 (3.0)        | 60.4 (6.7)       |
| glass (6 cl.)      | 67.5     | 52.1     | 80.4                 | 79.5        | 2.4           | 22.4     | 81.9            | 94.8        | 3.7                  | 80,4           | 53.6 (3.9)     | 81.9              | 63.3 (2.6)        | 61.6 (4.9)       | glass (6 cl.)      | 67.5     | 47.5     | 81.7            | 79.7        | 2.4           | 29.6     | 83.5            | 91.1        | 3.0           | 81.7                 | 54.8 (3.4)     | 83.5              | 60.7 (2.2)        | 58.7 (6.9)       |
| haberman (2 cl.)   | 72.0     | 91.8     | 74.2                 | 100.0       | 2.0           | 66.7     | 80.8            | 100.0       | 2.0                  | 74.2           | 47 (10.9)      | 80.8              | 54.1 (4.8)        | 56.5 (6.2)       | haberman (2 cl.)   | 72.0     | 93.5     | 73.8            | 100.0       | 2.0           | 79.4     | 78.5            | 100.0       | 2.0           | 73.8                 | 47 (12.2)      | 78.5              | 46.6 (5.7)        | 47.1 (9.6)       |
| kr-kp (2 cl.)      | 86.8     | 98.4     | 87.4                 | 100.0       | 2.0           | 5.4      | 100.0           | 100.0       | 2.0                  | 87.4           | 48 (10.2)      | 100.0             | 86.1 (0.4)        | 86.7 (0.4)       | kr-kp (2 cl.)      | 88.0     | 98.5     | 88.6            | 100.0       | 2.0           | 52.9     | 96.8            | 100.0       | 2.0           | 88.6                 | 49.1 (9.4)     | 96.8              | 78.1 (1.0)        | 79.0 (0.9)       |
| letter (26 cl.)    | 72.4     | 91.6     | 77.0                 | 57.7        | 2.7           | 13.3     | 99.0            | 97.9        | 18.7                 | 77.0           | 22.0 (1.2)     | 99.0              | 68.3 (0.2)        | 68.4 (0.2)       | letter (26 cl.)    | 72.9     | 91.9     | 77.4            | 58.5        | 2.8           | 35.3     | 96.7            | 91.8        | 11.7          | 77.A                 | 22.0 (1.1)     | 96.7              | 59.9 (0.3)        | 60.0 (0.3)       |
| monks1 (2 cl.)     | 70.0     | 87.4     | 72.7                 | 100.0       | 2.0           | 39.7     | 82.5            | 100.0       | 2.0                  | 72.7           | 51.2 (5.8)     | 82.5              | 61.6 (3.0)        | 64.3 (3.6)       | monks1 (2 cl.)     | 71.0     | 87.5     | 73.7            | 100.0       | 2.0           | 58.8     | 80.1            | 100.0       | 2.0           | 73.7                 | 51.8 (5.5)     | 80.1              | 57.9 (2.4)        | 60.6 (3.2)       |
| monks2 (2 cl.)     | 62.2     | 86.6     | 63.4                 | 100.0       | 2.0           | 15.3     | 81.2            | 100.0       | 2.0                  | 63.4           | 54.6 (6.8)     | 81.2              | 58.9 (2.2)        | 59.7 (2.3)       | monks2 (2 cl.)     | 62.2     | 86.7     | 63.5            | 100.0       | 2.0           | 40.2     | 72.5            | 100.0       | 2.0           | 63.5                 | 53.5 (6.0)     | 72.5              | 55.6 (2.2)        | 56.3 (2.5)       |
| monks3 (2 cl.)     | 95.3     | 99.2     | 95.5                 | 100.0       | 2.0           | 67.3     | 96.7            | 100.0       | 2.0                  | 95.6           | 64(25)         | 96.6              | 91.7 (3.2)        | 92.5 (3.1)       | monks3 (2 cl.)     | 95.5     | 99.8     | 95.6            | 100.0       | 2.0           | 90.5     | 97.2            | 100.0       | 2.0           | 96.3                 | 64 (31.3)      | 87.6              | 73 (14.1)         | 73 (14.1)        |
| nursery (5 cl.)    | 87.0     | 97.5     | 87.4                 | 78.9        | 2.0           | 49.0     | 98.4            | 99.6        | 2.5                  | 87.4           | 66.1 (5.3)     | 98.4              | 76.0 (1.0)        | 76.0 (0.9)       | nursery (5 cl.)    | 87.8     | 97.5     | 88.3            | 80.3        | 2.0           | 68.8     | 97.2            | 99.6        | 2.3           | 88.3                 | 67.8 (4.5)     | 97.2              | 67.1 (1.5)        | 66.9 (1.2)       |
| optdigits (10 cl.) | 91.2     | 95.2     | 93.5                 | 86.9        | 2.7           | 14.8     | 99.9            | 99.9        | 8.0                  | 93.5           | 46.9 (3.6)     | 99.9              | 89.7 (0.2)        | 89.8 (0.2)       | optdigits (10 cl.) | 91.3     | 95.3     | 93.5            | 86.2        | 2.6           | 54.6     | 99.0            | 98.4        | 4.9           | 93.5                 | 45.2 (3.1)     | 99.0              | 82.0 (0.4)        | 82.4 (0.4)       |
| pendigits (10 cl.) | 87.2     | 96.3     | 89.5                 | 81.8        | 2.5           | 29.2     | 97.1            | 99.1        | 7.2                  | 89.5           | 26.7 (2.7)     | 97.1              | 83.1 (0.3)        | 83.2 (0.3)       | pendigits (10 cl.) | 87.4     | 96.3     | 89.7            | 81.8        | 2.5           | 57.1     | 95.5            | 96.8        | 5.4           | 89.7                 | 25.7 (2.5)     | 95.5              | 76.5 (0.5)        | 77.3 (0.5)       |
| segment (7 cl.)    | 91.0     | 89.3     | 95.6                 | 96.7        | 3.7           | 31.7     | 98.8            | 99.9        | 6.1                  | 95.6           | 52.5 (3.9)     | 98.8              | 87.4 (0.7)        | 88.7 (0.7)       | segment (7 cl.)    | 91.6     | 89.5     | 95.9            | 97.6        | 3.7           | 54.8     | 97.7            | 99.3        | 5.5           | 95.9                 | 54.9 (3.0)     | 97.7              | 84.2 (0.9)        | 87.8 (1.0)       |
| sonar (2 cl.)      | 84.4     | 90.9     | 86.9                 | 100.0       | 2.0           | 41.8     | 97.9            | 100.0       | 2.0                  | 86.9           | 59 (14.3)      | 97.9              | 74.6 (3.1)        | 77.4 (2.6)       | sonar (2 cl.)      | 83.8     | 91.8     | 87.1            | 100.0       | 2.0           | 56.5     | 94.4            | 100.0       | 2.0           | 87.1                 | 46 (17)        | 94.4              | 69.9 (3.2)        | 75.2 (3.2)       |
| spambase (2 cl.)   | 89.1     | 99.5     | 89.4                 | 100.0       | 2.0           | 42.1     | 97.2            | 100.0       | 2.0                  | 89.4           | 31 (13.4)      | 97.2              | 83.3 (0.5)        | 83.7 (0.4)       | spambase (2 cl.)   | 88.9     | 99.5     | 89.2            | 100.0       | 2.0           | 76.1     | 94.1            | 100.0       | 2.0           | 89.2                 | 39(12.8)       | 94.1              | 72.6 (0.8)        | 73.3 (0.8)       |
| spect (2 cl.)      | 76.1     | 90.8     | 79.3                 | 100.0       | 2.0           | 53.9     | 90.2            | 100.0       | 2.0                  | 79.3           | 44 (12.6)      | 90.2              | 59.8 (4.1)        | 63.7 (4.3)       | spect (2 cl.)      | 73.4     | 88.5     | 78.1            | 100.0       | 2.0           | 67.A     | 83.5            | 100.0       | 2.0           | 78.1                 | 36.5 (8.8)     | 83.5              | 52.3 (4.0)        | 60.9 (4.7)       |
| splice (3 cl.)     | 94.5     | 97.2     | 96.4                 | 96.2        | 2.2           | 0.0      | 100.0           | 100.0       | 3.0                  | 96.4           | 49.5 (7.6)     | 100.0             | 94.9 (0.2)        | 94.5 (0.2)       | splice (3 cl.)     | 95.1     | 97.6     | 96.8            | 96.3        | 22            | 0.1      | 100.0           | 100.0       | 2.8           | 96.2                 | 52.1 (5.5)     | 100.0             | 95.1 (0.2)        | 95.0 (0.2)       |
| waveform (3 cl.)   | 81.3     | 99.0     | 81.6                 | 99.9        | 2.0           | 19.7     | 94.5            | 100.0       | 2.3                  | 81.6           | 50.3 (7.6)     | 94.5              | 78.0 (0.4)        | 78.2 (0.2)       | waveform (3 cl.)   | 81.4     | 99.1     | 81.6            | 99.8        | 2.0           | 54.1     | 89.6            | 100.0       | 2.1           | 81.6                 | 49.2 (5.5)     | 89.6              | 71.7 (0.6)        | 72.0 (0.6)       |
| yeast (10 cl.)     | 56.6     | 91.9     | 58.6                 | 70.0        | 2.3           | 28.0     | 69.1            | 91.1        | 3.7                  | 58.5           | 34.9 (6.7)     | 69.1              | 51.7 (1.7)        | 51.7 (1.7)       | yeast (10 cl.)     | 57.2     | 91.5     | 59.1            | 72.1        | 2.3           | 55.1     | 67.3            | 87.5        | 2.9           | 59.0                 | 36.7 (6.7)     | 67.3              | 44.8 (1.8)        | 45.1 (1.9)       |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
JNCC2: www.idsia.ch/~giorgio/jncc2.html
```

# Application IV

 $\mathsf{CRALC}:$  description logic with probabilities, applied to mobile robotics (USP).



# Application V

Planning with Markov Decision Processes with Imprecise Probabilities: graph-based representations of transition credal sets (USP).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

```
(define (domain sysadmin)
(:requirements :adl)(:types comp)(:predicates (up ?c)(conn ?c ?d))
(:action reboot
 :parameters (?x - comp)
 ·effect
     (and (decrease (reward) 1)
          (probabilistic 0.9 (up ?x))
          (oneof
          (forall (?d - comp)
            (probabilistic
              0.6 (when (exists (?c - comp)
                     (and (conn ?c ?d)(not (up ?c))(not (= ?x ?d))))
                  (not (up ?d))
          )))
          (forall (?d - comp)
            (probabilistic
              0.8 (when (exists (?c - comp)
                     (and (conn ?c ?d)(not (up ?c))(not (= ?x ?d))))
                  (not (up ?d))
    )))))))
```

#### To conclude...

- Graph-based "languages" can be used to compactly encode probabilities and credal sets over several variables.
- Credal networks are quite flexible and expressive.
- There are several possible extensions for a credal network.

- Strong extension is the most popular.
- Epistemic extension is quite intuitive.
- Inference and learning methods have been developed.
- Applications have been addressed.