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Outline

1. Motivation: why are graph-based “languages” useful?

2. Background: basics on Bayesian networks.

3. Credal networks: basic definitions.

4. Credal networks: basic theory .

5. Credal networks: basic applications.

Basic fact: everything is basic...



Motivation

I Graphs offer a compact and expressive language to express
scenarios...

I ... with many independent modules, with
interacting/hierachical pieces that display
dependence/independence.

I ... with simplifying assumptions concerning dependence.

I It is possible to exploit the structure of the graph to obtain...
I ... insights about theoretical properties.
I ... gain in computational operations.

I So, graphs are great. Let’ see what graphs are.
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Detour: directed acyclic graph
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Detour: graph-theoretic concepts

A parent of B and C
B and C parents of E
F child of C and D
E and F children of C
E , F and G descendants of C
A, B and D nondescendants of C
B, C , E , F and G descendants of A
D nondescendant of A
B and D parents of children of C



Motivation: Some history

I In the 60s, probabilities were not adopted in AI (McCarthy
and Hayes: “information necessary to assign numerical
probabilities is not ordinarily available’).’

I Many alternatives to probability were adopted: certainty
factors, Dempster-Shafer, fuzzy, non-classical logics...

I During the 80s, probabilities received attention, and Bayesian
networks appeared; Markov random fields were around and
were adopted.

I Since then, probability has been adopted everywhere:
knowledge representation, planning and problem solving,
learning.

I (Since 80s, credal networks have been also investigated.)
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The Alarm network



The LV-failure network



The HU network



Heredogram analysis



Heredogram to Bayesian network



Representing DNA sequences

I A popular representation is based on Bayesian networks
(actually, Hidden Markov Models):

(from www.cse.ucsc.edu/compbio/sam.html)



Protein interaction...

(Source: S. Carroll, V. Pavlovic, Protein classification using
probabilistic chain graphs and the Gene Ontology structure.
Bioinformatics, 22(15):1871–1878, 2006.)



Classification: expression detection



Genie, SamIam

Others: BNT, and for more, bnt.sourceforge.net/bnsoft.html.



Hugin, Analytica

Others: Netica, BayesiaLab, and for more,
bnt.sourceforge.net/bnsoft.html.



BUGS

This and a lot more: www.mrc-bsu.cam.ac.uk/bugs/



Application: Topic models

I Goal: to represent topics in text classification.

I Popular model: Latent Dirichlet analysis.

ϕj ∼ Dirichlet(B), θd ∼ Dirichlet(α),

zi ∼ Dirichlet(θβi ), wi |zi = j ∼ Dirichlet(ϕj).



Back to basics

I A Bayesian network encodes a single joint probability density
over X.

I The joint density is specified through a directed acyclic graph.
I Each node represents a random variable Xi in X.

I Parents of Xi : pa(Xi ).



Example: The dog problem

By Charniak, 1991:
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Semantics: The Markov condition

Every variable is independent of its nondescendants nonparents
given its parents.

����
����

��������

����= s=

?

F B

L D

H



Exercise

Enumerate the independence relations implied by the Markov
condition on these three networks.

I CHAIN: ��
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- -X Y Z
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Semantics: Basic result

Every variable is independent of its nondescendants nonparents
given its parents.

Theorem
The Markov condition implies that any Bayesian network
represents a unique joint probability density that factorizes as:

p(X) =
∏
i

p(Xi |pa(Xi )) .

Such a factorization reduces the number of needed probability
values.
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Exercise
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Write down the factorization of the joint distribution for
[A,B,C ,D,E ,F ,G ].



Exercise

1. Convince yourself that, given a directed acyclic graph, it is
possible to order the variables in such a way that variable Xi is
never preceded by one of its descendants.

2. Prove that for any Bayesian network,

p(X) =
∏
i

p(Xi |Yi ) ,

where Yi is a set of variables that precede Xi in some ordering
of variables that guarantees that Xi is never preceded by one
of its descendants.

3. Now prove Theorem 1.



d-separation

I Famous concept in Bayesian networks.

I Very complicated; sound, but not complete.

I Conceptually important: allows one to discard pieces of the
network.

I Proved only using the graphoid properties.

I Fast in a computer (polynomial algorithms).

Definition
Given three sets of variables X, Y and Z, suppose that along every
path between a variable in X and a variable in Y there is a variable
W such that:

1. either W is a collider and is not in Z and none of its
descendants are in Z,

2. or W is not a collider and is in Z.

Then Y and X are d-separated by Z.
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Perfect maps?

I A graph-based representation scheme where independence is
equivalent to d-separation is a perfect map.

I Bayesian networks are not perfect maps: There may be
independences without d-separation.

I Bayesian networks are independence maps: a d-separation
implies an independence.

I Moreover, all independences implied by d-separation are
obtained by application of graphoid properties to the Markov
condition!
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An exercise on failure of representation...

From Pearl, p. 126.

1. Consider population of animals where disease is spreading
through sexual contact.

2. Closed heterosexual group: two males M1, M2 and two
females F 1, F 2.

3. M1 and M2 are independent given F 1 and F 2.

4. F 1 and F 2 are independent given M1 and M2.

5. A pair of male-female is not independent.

6. Show: no Bayesian network with only four nodes can
represent this.



Inference

I We want: P(Xq|XE ).

I That is,

P(Xq|XE ) =
P(Xq,XE )

P(XE )

=

∑
X\{Xq ,XE} P(X)∑

X\XE
P(X)

=

∑
X\{Xq ,XE}

∏
i p(Xi |pa(Xi ))∑

X\XE
P(
∏

i p(Xi |pa(Xi )))
.

I Problem is #P-hard; some special cases are easy (polytrees:
Pearl algorithm), and some algorithms work well in practice...

I There are very powerful algorithms to approximate this
(MCMC, variational, loopy).

I There are other inferences... to be mentioned later.
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Exercise

Compute P(F |L).
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p(f ) = 0.5 p(b) = 0.5
p(l |f ) = 0.6 p(l |f c) = 0.05

p(d |f , b) = 0.8 p(d |f , bc) = 0.1
p(d |f c , b) = 0.1 p(d |f c , bc) = 0.7

p(h|d) = 0.6 p(h|dc) = 0.3



Learning

I Get training data, produce graph/probability values.

I Maximum likelihood: counting, and perhaps the EM
algorithm.

I Bayesian: typically with conjugate priors and independence
assumptions; often through MCMC or variational
approximations.



Building a Bayesian network

I Elicitation from experts.
I Start identifying variables, and build the graph.
I Then elicit the numbers.

I Learning from data.
I Elicit graph, learn numbers.
I Learn graph and numbers.

I ... or any combination of expert opinion and data.



In short,

1. Bayesian networks are compact and intuitive.

2. They consist of graph and conditional distributions.

3. Basic assumption is Markov condition.

4. The method is not “perfect” in a technical sense (not all
independences can be represented).

I Should we try other kinds of graphs? We could: Markov
random fields, chain graphs, etc. None is “perfect”... Anyway,
not discussed in this talk...
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Credal networks

I Suppose we have a set of variables X.

I We wish to compactly specify a set of joint distributions over
X, using graphs.

I Maybe we just wish to specify a set of Bayesian networks.

I Or, maybe we wish to specify a set of joint distributions using
a single graph and associated credal sets.

I This is a credal network.



Defining credal networks

I Take a directed acyclic graph, with a variable associated with
each node.

I Two possibilities:
1. We assume that every node is associated with a “local” credal

set/lower prevision conditional on its parents, and some rule
that combines these local pieces.

I Maybe impose p(X) =
∏

i p(Xi |pa(Xi ))?

2. We assume a Markov condition of some sort, and see what
happens.

I Maybe derive p(X) =
∏

i p(Xi |pa(Xi ))?
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Defining strong extension

I Suppose we have a directed acyclic graph, with a variable
associated with each node.

I Suppose every node is strongly independent of its
nondescendants nonparents given its parents.

I Take the largest set of joint distributions that satisfies this
condition (the strong extension).

I What is this set?



Strong extension

I The strong extension is the convex hull of a set of joint
distributions, all of which factorize as

p(X) =
∏
i

p(Xi |pa(Xi )) .



Example: The credal dog problem
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p(f ) ∈ [0.5, 0.6] p(b) ≤ 0.5
p(l |f ) ∈ [0.5, 0.7] p(l |f c) = [0.1, 0.2]
p(d |f , b) = 0.8 p(d |f , bc) = 0.1
p(d |f c , b) = 0.1 p(d |f c , bc) = 0.7

p(h|d) ∈ [0.5, 0.8] p(h|dc) = 0.3



Note: in the previous example,

I there are 25 possible ways to factorize the joint distribution...
Number of vertices is the main challenge with strong
extensions.

I all local credal sets are separately specified; we might instead
have a constraint p(l |f ) + p(l |f c) ≥ 0.5. Or maybe even a
non-local constraint p(l |f ) ≥ p(h|d)...



Separately specified strong extension

I The strong extension is the convex hull of a set of joint
distributions, all of which factorize as

p(X) =
∏
i

p(Xi |pa(Xi )) .

I Hence each variable can be associated with a “local” credal
sets K (Xi |pa(Xi ) = πik), one for each valid πik .

I Vertices of the joint credal set are combinations of vertices of
the “local” credal sets.

I Any lower/upper expectation is attained at a vertex of the
joint credal set (thus at a combination of vertices of “local”
credal sets.
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Exercise

I One can imagine a set of joint distributions that satisfies the
“strong” Markov condition but that is smaller than the strong
extension... just imagine imposing constraints amongst the
local distribution!

I Challenge: construct such a set of joint distributions for a
network X → Y , where X and Y are binary variables.



Specifying local conditional credal sets

I Qualitative constraints (back to Wellman, 1990).

I Probability intervals (back at least to Tessem, 1992).

I Order of magnitude comparisons.

I Belief functions.

I Possibilistic measures.

I General constraints (back a long way, van der Gaag, Moral,...),
either on probabilities or on lower probabilities/expectations.



Defining epistemic extension

I Suppose we have a directed acyclic graph, with a variable
associated with each node.

I Suppose every node is epistemically independent of its
nondescendants nonparents given its parents.

I Take the largest set of joint distributions that satisfies this
condition (the epistemic extension).

I What is this set?



An example of epistemic extension

Consider network
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with four binary variables, and probability intervals assigned to all
probability values.
More than 6 million vertices in the epistemic extension!!!
For more on epistemic extension, see Gert’ talk.



Epistemic independence and d-separation

I Epistemic independence does not satisfy the contraction
property.

I A credal network with epistemic independence may not satisfy
d-separation.

I Example:
I Binary variables W , X and Y .
I K (W ,X ,Y ) is convex hull of three distributions:

W X Y p1(X , Y ,W ) p2(X , Y ,W ) p3(X , Y ,W )
W0 X0 Y0 0.008 0.018 0.0093
W1 X0 Y0 0.072 0.072 0.0757
W0 X1 Y0 0.032 0.042 0.037
W1 X1 Y0 0.288 0.168 0.228
W0 X0 Y1 0.096 0.084 0.09
W1 X0 Y1 0.024 0.126 0.075
W0 X1 Y1 0.384 0.196 0.290
W1 X1 Y1 0.096 0.294 0.195

I X and Y are epistemically independent; X and W are
conditionally epistemically independent given Y .

I But X and (W ,Y ) are not not epistemically independent.



Epistemic independence and a conjecture

I Epistemic independence does not satisfy the contraction
property.

I A credal network with epistemic independence may not satisfy
d-separation.

I Perhaps the way to go is to pursue different graph-based
models (Moral, Vantaggi).

I Perhaps the way to go is to assume just epistemic irrelevance.

I Conjecture: the epistemic extension does satisfy d-separation.



Inference with strong extensions

I Strong extensions are quite similar to Bayesian networks (for
instance, d-separation).

I Inference is:
P(Xq|XE ) = min P(Xq|XE ) .

I Or, more explicitly,

min

∑
X\{Xq ,XE}

∏
i p(Xi |pa(Xi ))∑

X\XE

∏
i p(Xi |pa(Xi ))

.

where typically the min is over a large set of “local” credal
sets.

I This is a multilinear program.

I Solution lies at a set of vertices of credal sets.

I Best solutions resort to optimization theory to procedure
inference engines.
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Inference methods

I Enumeration methods (obsolete), multilinear programming
(exact/approximate), simulated annealing, genetic
algorithms... (approximate), variational (approximate).

I Special case where exact inference is simple: polytrees with
binary variables.

I Polytrees: if one discards arrow directions, one gets a tree.
I Binary variables: credal sets are intervals.



2U and loopy 2U

I In the polytree+binary variable case, the 2U algorithm
produces inferences in polynomial time.

I The 2U algorithm can be understood as a sequence of
message exchanges between nodes in the polytree; the
sequence surely ends.

I The loopy 2U algorithm is an approximate method for general
graphs: messages are continuously exchanged, until
probability intervals for all nodes are obtained (no guarantees,
but good practical performance).



Complexity

Bayesian Networks
Problem Polytree Bounded induced-width General
Belief updating Polynomial Polynomial PP-Complete
MPE Polynomial Polynomial NP-Complete
MAP NP-Complete NP-Complete NPPP-Complete
MmAP ΣP

2 -Complete ΣP
2 -Complete NPPP-Hard

Strong extensions
Problem Polytree Bounded induced-width General
Belief updating NP-Complete NP-Complete NPPP-Complete
MPE Polynomial Polynomial NP-Complete
MAP ΣP

2 -Complete ΣP
2 -Complete NPPP-Hard

(Bounded induced-width: subjacent graph has induced-width
bounded by O(log(s)), where s is the size of input.)



Learning

I First scenario: missing data.
Absence of assumptions concerning missing data leads to set
of estimates for probability values.

I Example:
Consider network X → Y and data:

X 0 1 0 1 1

Y 1 0 0 1 ?

Here, maximum likelihood estimate for P(Y = 1|X = 1)
belongs to [1/3, 2/3].



Learning with imprecise priors

I Second scenario: imprecise priors. For instance, instead of
Dirichlet distributions, the Imprecise Dirichlet model (IDM).

I Here we have, with suitable independence assumptions over
the priors:

P̂(Xi = xij |pa(Xi ) = πik) ∈
[

nijk

s + nik
,

s + nijk

s + nik

]
,

where s is the parameter of the IDM.



Application I

Expert system for assessment of debris in Switzerland (IDSIA).



Application II

Semi-qualitative prior for facial expression recognition (IDSIA).



Application III

Credal classifiers: dealing with missing values, few data points, and
imprecise priors in classification (IDSIA).
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JNCC2: www.idsia.ch/˜giorgio/jncc2.html



Application III

Credal classifiers: dealing with missing values, few data points, and
imprecise priors in classification (IDSIA).

JNCC2: www.idsia.ch/˜giorgio/jncc2.html



Application IV
CRALC: description logic with probabilities, applied to mobile
robotics (USP).

Desk ≡ Table u ∃near.Chair, Entrance ≡ Door u ∃near.Sign,

InteriorObject v Object,

P(Object) ∈ [0.2, 0.8] , P(Environment) ∈ [0.2, 0.8] .



Application V

Planning with Markov Decision Processes with Imprecise
Probabilities: graph-based representations of transition credal sets
(USP).

(define (domain sysadmin)

(:requirements :adl)(:types comp)(:predicates (up ?c)(conn ?c ?d))

(:action reboot

:parameters (?x - comp)

:effect

(and (decrease (reward) 1)

(probabilistic 0.9 (up ?x))

(oneof

(forall (?d - comp)

(probabilistic

0.6 (when (exists (?c - comp)

(and (conn ?c ?d)(not (up ?c))(not (= ?x ?d))))

(not (up ?d))

)))

(forall (?d - comp)

(probabilistic

0.8 (when (exists (?c - comp)

(and (conn ?c ?d)(not (up ?c))(not (= ?x ?d))))

(not (up ?d))

)))))))



To conclude...

I Graph-based “languages” can be used to compactly encode
probabilities and credal sets over several variables.

I Credal networks are quite flexible and expressive.
I There are several possible extensions for a credal network.

I Strong extension is the most popular.
I Epistemic extension is quite intuitive.

I Inference and learning methods have been developed.

I Applications have been addressed.


