5th SIPTA school on imprecise probability

16-20 July 2012, Pescara (Italy)

Robustly correcting mistakes made by OCR software

Jasper De Bock

University of Ghent (Belgium) jasper.debock@ugent.be

A sequence of hidden state variables

A sequence of observable output variables

A sequence of hidden state variables

A sequence of observable output variables

A sequence of hidden state variables

A sequence of observable output variables

Applications of state sequence estimation

- Speech recognition
- Bio-informatics
 - Finding CpG-islands
 - Locating introns and exons
- Grammatical tagging
- OCR postprocessing
- **>** ...

Optical character recognition software

Viterbi

EstiHMM

Viterbi

Calculate relative frequencies in a (small) training set with known hidden states

$$S_1 (O_1 | X_1)$$

$$S_2(O_2|X_2)$$
 $S_3(O_3|X_3)$

$$S_3 (O_3 | X_3)$$

EstiHMM

Apply an IDM to a (small) training set with known hidden states

$$\underline{S}_1 (O_1 | X_1)$$

$$\underline{S}_1 (O_1 | X_1)$$
 $\underline{S}_2 (O_2 | X_2)$ $\underline{S}_3 (O_3 | X_3)$

$$\underline{S}_3$$
 (O₃ | X₃)

La Divina Commedia

ORIGINAL WORDS IN THE BOOK

CORRESPONDING WORDS IN TEXT DOCUMENT

TRAINING SET

build an (imprecise)
HMM

TRAINING SET TESTING SET

TESTING SET

La Divina Commedia

Solution Viterbi

VITA

Solution(s) EstiHMM-algoritme

VITA

La Divina Commedia

Solution Viterbi

CON

Solution(s) EstiHMM-algoritme

CON

La Divina Commedia

Solution Viterbi

EN

Solution(s) EstiHMM-algoritme

CH

EH

EN

La Divina Commedia

Solution Viterbi

LO

Solution(s) EstiHMM-algoritme

LO

10

La Divina Commedia

Solution Viterbi

ONE

Solution(s) EstiHMM-algoritme

CBE CHE
CNE CZE
ONE

La Divina Commedia

	total number	corr <u>ect after</u> OCR	wrong after OCR
total number	200 (100%)	137 (68.5%)	63 (31.5%)
Viterbi			
correct solution	157 (78.5%)	132	25
wrong solution	157 (78.5%) 43 (21.5%)	5	38
EstiHMM			
one of the solutions correct	172 (86%)	137	35
none of the solutions correct	28 (14%)	0	28

- Both algorithms are able to detect and correct errors
- The EstiHMM algorithm (in this case) does not introduce errors in words that were already correct
- EstiHMM sometimes returns multiple solutions and therefore (of course) includes the correct solution more often

La Divina Commedia

EstiHMM (single solutions)	total number	corr <u>ect after</u> OCR	wrong after OCR
total number		129 (83.2%)	26 (16.8%)
single correct solution	134 (86.5%)	129	5
single wrong solution	21 (13.5%)	0	21

- If the EstiHMM algorithm gives a single solution, it will be identical to the solution given by the Viterbi algorithm
- EstiHMM giving a single solution serves as an indication that
 - the word we are applying it to does not contain errors
 - the result returned by the Viterbi algorithm is correct

La Divina Commedia

	total number	correct after OCR	wrong after OCR
EstiHMM (multiple solutions)		0 (17 07)	27 (22 29)
total number	45 (100%)	8 (17.8%)	37 (82.2%)
correct solution included	38 (84.4%)	8	30
correct solution not included	7 (13.0%)	0	7
Viterbi			
correct solution	23 (51.1%)	3	20
wrong solution	22 (48.9%)	5	17

- EstiHMM giving multiple solutions serves as an indication that
 - the word we are applying it to does indeed contain errors
 - the result returned by the Viterbi algorithm is less reliable
- EstiHMM can be used to robustify the precise result given by the Viterbi algorithm

How can undecisiveness be useful?

- As a method of picking out the hard problems, which you then try to solve with more expensive or time-consuming methods (solve easy cases automatically and use experts only for the difficult ones!)
- ➤ If not deciding is a useful choice too, because making a wrong decision is dangerous or expensive (choosing between specific and general medication)

Thanks for your attention!